

Preliminary Construction Demolition & Waste Management Plan

Oldtown Planning: Phase 5 – Strategic Housing Development (SHD)

April 2022

Waterman Moylan Consulting Engineers Limited

Block S, East Point Business Park, Alfie Byrne Road, Dublin D03 H3F4 www.waterman-moylan.ie

Client Name: Gerard Gannon Properties

Document Reference: 17-144r.015

Project Number: 17-144

Quality Assurance – Approval Status

This document has been prepared and checked in accordance with Waterman Group's IMS (BS EN ISO 9001: 2015 and BS EN ISO 14001: 2015)

Issue	Date	Prepared by	Checked by	Approved by
1	5 June 2020	Robert Walpole	Mark Duignan	Mark Duignan
2	06 April 2022	Robert Walpole	Richard Miles	Mark Duignan

Comments

Disclaimer

This report has been prepared by Waterman Moylan, with all reasonable skill, care, and diligence within the terms of the Contract with the Client, incorporation of our General Terms and Condition of Business and taking account of the resources devoted to us by agreement with the Client.

We disclaim any responsibility to the Client and others in respect of any matters outside the scope of the above.

This report is confidential to the Client, and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk.

Contents

1.	Introd	luction	
	1.1	Background of Report	
	1.2	Site Location	3
2.	The S	ite and the Surrounding Environs	5
	2.1	Site Description	5
	2.2	Proposed Development	5
3.	Gene	ral Site Set-Up and Pre-Commencement Measures	6
4.	Const	truction Waste Management	7
	4.1	Policy and Legislation	7
	4.2	Typical Construction Waste	7
	4.3	On-Site Construction Waste Management	7
	4.4	Off-Site Waste Management Licensing/Permitting	
	4.5	Appointment of C&D Waste Manager	9
	4.6	C&D Record Keeping	9
	4.7	Topsoil	10
	4.8	Earthworks – Cut and Fill Policy	10
5 .	Delive	eries	11
6.	Parkii	ng and Storage	12
7.	Dust a	and Dirt Control	13
	7.1	Mitigation Measures	13
8.	Water		15
9.	Noise	Assessment and Control Measure	16
	9.1	Air Quality Monitoring and Noise Control Unit's Good Practice Guide for Constructi and Demolition	
	9.2	Environmental Noise Mitigation Measures	16
	9.3	Risk Assessment & Mitigation	18
	9.4	Potential Noise Sources	19
	9.5	Mitigation Measures	19
	9.6	Proper Use of Hearing Protection	20
10.	Erosi	on and Sediment Control	21
	10.1	Run-Off to Ditches	21
	10.2	Sediment Control	23
	10.3	Sediment Control Measures	23
11.	Const	truction Phasing and Programme	25
	11.1	Run-Off to Ditches	25
App	endice	98	26
	A.	Site Investigation Report	26

Figures

Figure 1 Oldtown Planning Site Location	
Figure 2 Surface Water Drainage Network	21
Figure 3 Examples of Diversion Drains	24
Tables	
Table 1 Schedule of Accommodation	5
Table 2 Estimated C&D Waste Arisings on Site	3
Table 3 Details of materials taken from site	10
Table 4 Pollution Prevention Measures	23

Appendices

A. Site Investigation Report

1. Introduction

1.1 Background of Report

This report has been prepared by Waterman Moylan as part of the documentation in support of the Oldtown Phase 5 Planning application for a proposed residential development at Oldtown, Swords, Co. Dublin, to be submitted to An Bord Pleanála for a proposed strategic housing development (SHD). This document has been set up to be a 'living document' which will be updated by the developer and contractor as the project progresses.

The proposed planning application for Phase 5 of the development forms part of the Oldtown and Mooretown lands, northwest of Swords, which were subject to the now expired Oldtown-Mooretown Local Area Plan (LAP) adopted by Fingal County Council in October 2010.

The Preliminary Construction, Demolition & Waste Management Plan sets out typical arrangements and measures which may be undertaken during the construction phase of the project in order to mitigate and minimise disruption/disturbance to the area around the site. The purpose of this report is to summarise the possible impacts and measures to be implemented and to guide the Contractor who will be required to develop and implement the Construction Management Plan on site during the course of the construction period.

As is normal practice, the Main Contractor for the project is responsible for the method in which the construction works are carried out and to ensure that best practices and all legal obligations including Local Authority requirements and Health and Safety legislation are complied with. The main contractor is also responsible for the design and installation of all temporary works required to complete the permanent works. The plan should be used by the Main Contractor to develop their construction, demolition & waste management plan.

1.2 Site Location

The area of Oldtown-Mooretown LAP lands is approximately 111 hectares. The lands are located at the western development edge of Swords, within the catchment of the Broadmeadow River.

The Oldtown–Mooretown lands are divided by the Rathbeale Road, with Oldtown lands to the north (circa 50 Ha) and Mooretown to the south (circa 61 Ha).

This application (net area 7.80 Ha), which forms Phase 5 of the Oldtown development, is located northwest of the existing Ashton development, in the north-west quarter of the Oldtown Lands.

The location is shown overleaf in Figure 1 and in detail on drawing 17-144.P1000, Site Location Map.

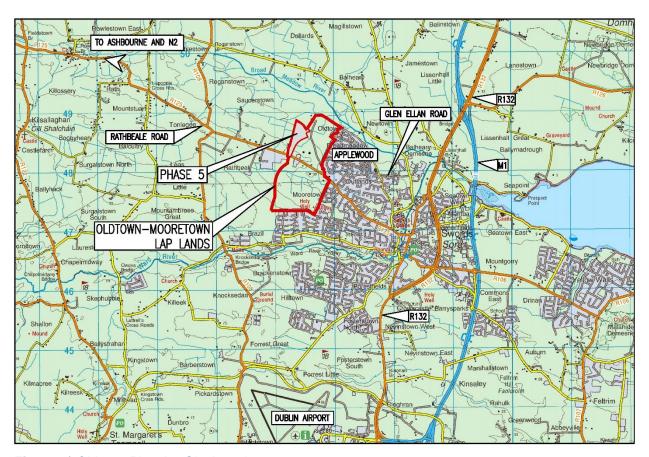


Figure 1 | Oldtown Planning Site Location

2. The Site and the Surrounding Environs

2.1 Site Description

The subject site was previously used for agricultural purposes.

The Oldtown lands generally fall from a high point of approximately 33.0m OD Malin on Rathbeale Road down to approximately 9.0m OD Malin at the Broadmeadow River to the north of the subject lands.

The Oldtown Phase 5 site is bounded on the southeast by the Oldtown Phase 2 development currently under construction, to the west by agricultural lands, to the north by the Oldtown Regional Park and to east by the Oldtown 3 & 4 developments.

The site is accessed from Glen Ellan Road and Rathbeale Road via Oldtown Avenue/Miller's Avenue, Park Avenue and Longview Avenue which have been constructed as part of the Oldtown LAP development.

2.2 Proposed Development

The proposed development totals 377 No. units, comprising; 173 No. Houses, 134 No. Apartments, and 70 No. Apartment/Duplex units, on an area of c. 8.25ha. A 519m² Creche is also proposed.

The proposed road levels around the site range from 33.39 to 15.99m OD Malin with finished floor levels ranging from 33.11m to 16.47m OD Malin.

Unit Description		No. of Units
SS	2-Bed	9
Houses	3-Bed	147
ヹ	4-Bed	17
	Block A	18
တ္	Block B	8
) ×e	Block C	8
Duplexes	Block D	20
△	Block E	8
	Block F	8
ίδί	Block A	48
nent	Block B1	32
Apartments	Block B2	32
Ā	Block C	22
Total		377

Table 1 | Schedule of Accommodation

The development includes all associated site works and infrastructure, including internal roads, paths, cycle-paths, public lighting, utilities, foul and surface drainage, and landscaped open space.

3. General Site Set-Up and Pre-Commencement Measures

The following measures will be carried out by the Contractor:

- A general condition survey of the roads and infrastructure in the area prior to any work being carried out on the site.
- A site compound including offices and welfare facilities will be set up by the main contractor and is
 intended to be located in the vicinity of the existing Liffey Developments Compound at the end of
 the Glen Ellan Road Extension.
- Prior to any site works commencing, the main contractor will investigate/identify the exact location
 of and tag all existing services and utilities around and through the site.
- Typical working hours for the site will be 08.00 to 19.00 Monday to Friday and 08.00 to 14.00 Saturday. No Sunday work will generally be permitted. The above working hours are typical; however, special construction operations may need to be carried out outside these hours in order to minimise disruption to the surrounding area.
- Hoarding lines and site security will be set up within the development site as required.

Access gates will be provided at all site and compound access points. The main construction access will be from Oldtown Avenue/Millers Avenue. A detailed traffic management plan will be prepared by the Contractor and agreed with Fingal County Council, the Road Authority, prior to commencing works on the public road.

4. Construction Waste Management

This Preliminary Construction Waste Management guideline will be incorporated into the requirements for the Contractor and the Plan will be developed by the Contractor as the construction progresses.

There are no buildings/structures present on this site, and as such an asbestos survey will not be necessary in this instance. In the event that contaminated soil is encountered, this soil will be removed by an appropriately accredited contractor and disposed of at an appropriately accredited facility.

4.1 Policy and Legislation

The principles and objectives to deliver sustainable waste management for this project have been incorporated in the preparation of this report and are based on the following strategic objectives:

- National Policy: The Waste Management Acts 1996 to 2005
- Local Policy: Waste Management Plan for the Dublin Region 2005 2010, November 2005.

This Waste Management Plan is also in accordance with the following guidance note published by the Department of the Environment, Heritage and Local Government in July 2006:

• Best Practice Guidelines on the Preparation of Waste Management Plans for Construction and Demolition (C&D) Projects.

The hierarchy of waste management sets out the guiding principles in order of importance as follows:

- 1. Reduction of the amount of waste generated by the construction process.
- 2. Segregation of waste is a key concept that will be implemented during the course of the construction phase of the development to enable ease in re-use and recycling, wherever appropriate.
- 3. Recycle waste material where feasible, including the use of excess excavations as fill material, recycling of various waste fractions such as metals and packaging etc.

4.2 Typical Construction Waste

Typical construction waste which will be generated by the development is as follows:

- General site clearance waste including tree stumps etc.
- Some of the excavated material may require to be disposed of in a licensed landfill site due to slightly elevated levels of fluoride, sulphate, total dissolved soldis and total monohydric phenols, above the level of "inert". This shall be determined by the receiving landfill. Otherwise, material is classified as inert and non-hazardous. The Site investigation Report is included as Appendix A.
- Surface water runoff.
- Packaging and waste construction materials generated during the course of the construction activities.

4.3 On-Site Construction Waste Management

It is estimated that all cut and fill operations and any other excavation will be balanced in terms of quantities. Therefore, it is envisaged that no significant amounts of excavated materials shall be disposed of off-site.

All waste masonry will be stored and crushed on site and used for site haul roads in later stages of the project.

Skips will be provided for the disposal of wood from the site. It is envisaged that the majority of the wood for disposal will come from pallets used for the transport of construction materials.

Other non-hazardous waste generated by the site (packaging and running of site offices) will be collected in separate roll-on skips.

There are no hazardous materials expected on this site. Any hazardous material encountered will be disposed of to a suitably licence tip.

The Purchasing Manager shall ensure that materials are ordered so that the quantity delivered, the timing of the delivery and the storage is not conducive to the creation of unnecessary waste.

C & D Waste Material	Quantity (tonnes)
Clay and stones	None anticipated. All arisings will be used as fill and landscaping on the site.
Concrete*	None anticipated. *A concrete crushing permit will be required if crushing is to occur. Crushing not anticipated.
Masonry	None anticipated. All arisings will be used as crushed and used as site haul roads.
Wood	To be Completed by C&D Waste Manager
Packaging & Other Waste Materials	To be Completed by C&D Waste Manager
Hazardous Materials	None anticipated, to be determined by C&D Waste Manager
Total Arisings Off Site	To be Completed by C&D Waste Manager

Table 2 | Estimated C&D Waste Arisings on Site

4.4 Off-Site Waste Management Licensing/Permitting

All waste materials (where necessary, after in-situ reuse and recycling options have been fully considered) shall be disposed of off-site, under the appropriate Duty of Care and subject to approvals/consents from the relevant statutory bodies. It is the responsibility of the Contractor to ensure that any company to whom waste is transferred is legally permitted to do so and that the facility they bring the waste to is licensed to handle that type of waste as outlined in the Waste Management Acts 1996-2005. The Waste Collection Permit Register, in accordance with the Waste Management (Collection Permit) Regulations 2001 will be consulted to ensure that waste carriers hold the appropriate permit.

The relevant waste collection permits and waste licences shall be provided by the Main Contractor and shall be appended to this report once reviewed.

An inspection of the site shall be made by the Main Contractor for hazardous substances, gas cylinders and the like. If such substances are encountered during the course of construction, then works must be halted. The project supervisor for construction stage (PSCS) and the responsible Statutory Authority shall be informed immediately.

The Contractor shall prepare a detailed inventory of construction based hazardous waste generated, such as tars, adhesives, sealants, and other dangerous substances, and these will be kept segregated from other non-hazardous waste to prevent possible contamination. Arrangements shall be made for such

substances for disposal in a safe manner to an authorized disposal site or by means acceptable to the relevant Authority.

The Contractor shall ensure that the excavation works are carried out in accordance with best standard practice and excavation materials are well segregated to minimize any potential cross-contamination.

The Contractor shall carry out appropriate environmental chemistry testing in order to determine the waste classification of the soils that are to be excavated and that shall include Waste Acceptance Criteria testing. The test regime shall be agreed with the receiving landfill operator and the testing shall be carried out by an accredited laboratory.

Should excavation materials be assessed to be hazardous, the Contractor shall carry out pre-treatment of the waste soils to a methodology that is agreed with the receiving landfill operator and in accordance with Environmental Protection Agency guidance.

The Main Contractor is encouraged to reuse and recycle any waste materials as far as is reasonably practicable.

In respect of any liquid disposal including underground water, The Contractor shall carry out appropriate environmental chemistry testing in order to determine whether the liquid is contaminated or not. The test regime shall be agreed with the receiving disposal facility and the testing shall be carried out by an accredited laboratory.

The Main Contractor shall manage and carry out the works in accordance with best environmental practice and in accordance with the requirements of Local Authority, EPA and all requirements as specified in this document.

4.5 Appointment of C&D Waste Manager

The Main Contractor shall appoint a C&D Waste Manager. The C&D Waste Manager will have overall responsibility for the implementation of the project Waste Management Plan (WMP) during the construction phase.

Copies of the Waste Management Plan will be made available to all relevant personnel on site. All site personnel and sub-contractors will be instructed about the objectives of the Waste Management Plan and informed of the responsibilities which fall upon them as a consequence of its provisions. Where source segregation, selective demolition and material reuse techniques apply, each member of staff will be given instructions on how to comply with the Waste Management Plan. Posters will be designed to reinforce the key messages within the Waste Management Plan and will be displayed prominently for the benefit of site staff.

4.6 C&D Record Keeping

It is the duty of the C&D Waste Manager to ensure that necessary licenses have been obtained as needed. Each consignment of C&D waste taken from the site will be subject to documentation which will conform with *Table 3* along with Transportation Dockets to ensure full traceability of the material to its final destination.

Detail	Particulars
Project of Origin	Oldtown Phase 5, Swords, Co. Dublin
Material being Transported	Soil, Construction waste
Quantity of Material	To be completed by C&D Waste Manager
Date of Material Movement	To be completed by C&D Waste Manager
Name of Carrier	To be completed by C&D Waste Manager
Destination of Material	To be completed by C&D Waste Manager
Proposed Use	To be completed by C&D Waste Manager

Table 3 | Details of materials taken from site

4.7 Topsoil

In the case of topsoil careful planning and on-site storage can ensure that this resource is reused on-site as much as possible. Any surplus of soil not reused on site can be sold. However, topsoil is quite sensitive and can be rendered useless if not stored and cared for properly.

- It is important that topsoil is kept completely separate from all other construction waste as any cross-contamination of the topsoil can render it useless for reuse.
- It is important to ensure that topsoil is protected from all kinds of vehicle damage and kept away from site-track, delivery vehicle turning areas and site plant and vehicle storage areas.

If topsoil is stored in piles of greater than two metres in height the soil matrix (internal structure) can be damaged beyond repair. It should also be kept as dry as possible and used as soon as possible to reduce any deterioration through lengthy storage and excess moving around the site.

Records of topsoil storage, movements and transfer from site will be kept by the C&D Waste Manager.

4.8 Earthworks – Cut and Fill Policy

Earthworks for road and structure foundations form a major part of the quantity of waste that will be generated by the construction phase of this project. In order to optimise the impact of the generation of surplus material due to excavation the following principles has been considered during the detail design and construction phase:

- The quantity of excavated materials to be removed from or imported into the site has been reduced
 by establishing levels of the proposed buildings which optimise the volume of cut and fill. It is not
 envisaged that any surplus excavated material will result from this development and that all arisings
 from excavations will be retained and reused on site.
- Unsuitable sub-soils generated by excavations on site will be reviewed for reuse as landscaping or non-engineering fills on adjoining or other construction sites within the region. Should material exportation/importation be required from/to other sites, these will be subject to an Article 27 notification to the EPA.
- Careful separation of builder's rubble, packaging, and contaminated waste from re-usable material will result in the minimisation of the disposal of material to landfill.

5. Deliveries

It is intended that deliveries to the construction site will typically be made to one main access which will be off Millers Avenue.

Materials should be ordered and delivered to site on an "as needed" basis in order to prevent over supply to site. Deliveries will be managed upon arrival to the site and systems should be provided in order to avoid any queuing of delivery vehicles, for example: in the event that large concrete pours are required, which may result in congestion at the entrance to the site, the deliveries will be organised such that concrete trucks will queue at a pre-determined staging point (such that they do not cause an obstruction to general traffic in the area) and will then be called in by radio as appropriate to the site. A number of the construction traffic movements will be undertaken by heavy goods vehicles, though there will also be vehicle movements associated with the appointed contractors and their staff.

An estimate of the day-to-day traffic movements associated with the construction activities, based on experience of similar sites, projects that the number of construction related HGV movements to and from the application site will be approximately 10 arrivals and departures per day.

Similarly, the general workforce, which equates to 60-100 employees and with an allowance for shared journeys could equate to a maximum of around 30-50 arrivals and departures per day by private vehicle.

This number of construction vehicle movements is low compared to the number of trips expected to be generated by the proposed development during the operational phase. It should be noted that the majority of such vehicle movements would be undertaken outside of the traditional peak hours, and it is not considered that this level of traffic would result in any operational problems.

Care will be taken to ensure existing pedestrian routes are suitably maintained as necessary during the construction period, and temporary car parking is provided within the site for contractor's vehicles.

It is proposed that a Construction Management Plan (CMP) would be prepared by the appointed contractor in order to minimise the potential impact of the construction phase of the proposed development on the safety and amenity of other users of the public road. The CMP will consider the following aspects:

- Minimise the volume of material removed from site by optimising the cut to fill requirements within the site;
- Segregation of waste material produced during the construction process to minimise the contamination or reusable fill material resulting from excavation on the site;
- Wheel wash to be provided for vehicles leaving the site when earthworks are being carried out during winter periods;
- Ensure that deliveries to the site and removal of spoil material from this site are restricted to
 off peak periods where possible and practicable.
- Optimise routes to be used by heavy vehicles and detail construction traffic forecast;
- Determine the working hours of the site;
- Facilities for loading and unloading and:
- Facilities to parking cars and other vehicles.

Set procedures and designated wash-out areas will be provided, or alternatively vehicle wash-out will be prohibited if a suitable wash-out area is not identified.

Deliveries will be managed on arrival to avoid any queuing of delivery vehicles on to Oldtown Avenue and subsequently Rathbeale Road.

6. Parking and Storage

Parking will be provided on site. No on street parking or parking in the local residential areas will be permitted.

The main contractor will be required to schedule delivery of materials strictly on a daily basis. As there are adequate storage facilities available on site it is not envisaged that there will be any necessity to provide a secure materials staging compound remote from the site, in which to temporarily store materials from suppliers, until such time as these can be accommodated on site.

7. Dust and Dirt Control

Nuisance dust emissions from construction activities are a common and well recognised problem. Fine particles from these sources are recognised as a potential significant cause of pollution.

The main contractor will be required to demonstrate that both nuisance dust and fine particle emissions from the site are adequately controlled and are within acceptable limits.

Dust and fine particle generation from construction and demolition activities on the site can be substantially reduced through carefully selected mitigation techniques and effective management. Once particles are airborne it is very difficult to prevent them from dispersing into the surrounding area. The most effective technique is to control dust at source and prevent it from becoming air borne, since suppression is virtually impossible once it has become air borne.

7.1 Mitigation Measures

The following are techniques and methods which are widely used currently throughout the construction industry to control dust and dirt emitting from the site, and which may be used in the Oldtown Phase 5 development.

- 1. The roads around the site are all surfaced, and no dust is anticipated arising from unsealed surfaces.
- 2. A regime of 'wet' road sweeping can be set up to ensure the roads around the immediate site are as clean and free from dirt / dust arising from the site, as is reasonably practicable. This cleaning will be carried out by approved mechanical sweepers.
- 3. Footpaths immediately around the site can be cleaned by hand regularly, with damping as necessary.
- 4. High level walkways and surfaces such as scaffolding can be cleaned regularly using safe 'wet' methods, as opposed to dry methods.
- 5. Vehicle waiting areas or hard standings can be regularly inspected and kept clean by brushing or vacuum sweeping and will be regularly sprayed to keep moist, if necessary.
- 6. Vehicle and wheel washing facilities can be provided at site exit(s) where practicable. If necessary, vehicles can be washed down before exiting the site.
- 7. Netting can be provided to enclose scaffolding in order to mitigate escape of air borne dust from the existing and new buildings.
- 8. Vehicles and equipment shall not emit black smoke from exhaust system, except during ignition at start up.
- 9. Engines and exhaust systems should be maintained so that exhaust emissions do not breach stationary emission limits set for the vehicle / equipment type and mode of operation.
- 10. Servicing of vehicles and plant should be carried out regularly, rather than just following breakdowns.
- 11. Internal combustion plant should not be left running unnecessarily.
- 12. Where possible fixed plant such as generators should be located away from residential areas.
- 13. The number of handling operations for materials will be kept to a minimum in order to ensure that dusty material is not moved or handled unnecessarily.

- 14. The transport of dusty materials and aggregates should be carried out using covered / sheeted lorries.
- 15. Material handling areas should be clean, tidy, and free from dust.
- 16. Vehicle loading should be dampened down and drop heights for material to be kept to a minimum.
- 17. Drop heights for chutes / skips should be kept to a minimum.
- 18. Dust dispersal over the site boundary should be minimised using static sprinklers or other watering methods as necessary.
- 19. Stockpiles of materials should be kept to a minimum and if necessary, they should be kept away from sensitive receptors such as residential areas etc.
- 20. Stockpiles where necessary, should be sheeted or watered down.
- 21. Methods and equipment should be in place for immediate clean-up of spillages of dusty material.
- 22. No burning of materials will be permitted on site.
- 23. Earthworks excavations should be kept damp where necessary and where reasonably practicable.
- 24. Cutting on site should be avoided where possible by using pre-fabrication methods.
- 25. Equipment and techniques for cutting / grinding / drilling / sawing / sanding etc., which minimise dust emissions and which have the best available dust suppression measures, should be employed.
- 26. Where scabbling is to be employed, tools should be fitted with dust bags, residual dust should be vacuumed up rather than swept away, and areas to be scabbled should be screened off.
- 27. Wet processes should be used to clean building facades if possible. If dry grit blasting is unavoidable then ensure areas of work are sealed off and dust extraction systems used.
- 28. Where possible pre-mixed plasters and masonry compounds should be used to minimise dust arising from on-site mixing.
- 29. Prior to commencement, the main contractor should identify the construction operations which are likely to generate dust and to draw up action plans to minimise emissions. Furthermore, the main contractor should prepare environmental risk assessments for all dust generating processes, which are envisaged.
- 30. The main contractor should allocate suitably qualified personnel to be responsible for ensuring the generation of dust is minimised and effectively controlled.

8. Water

The excavations for the drainage pipes, water supply, utilities and foundations are anticipated as being relatively shallow and will have minimal impact on the ground water in the site.

Following completion of any required initial dewatering, it is expected that flows of water into the excavation will be relatively small. These flows will be managed by sump pumping on an as-required basis.

During any discharge of surface water from the excavations, the quality of the water will be regularly monitored visually for hydrocarbon sheen and suspended solids. Periodic laboratory testing of discharge water samples will be carried out in accordance with the requirements of the discharge licence obtained from the Local Authority.

9. Noise Assessment and Control Measure

9.1 Air Quality Monitoring and Noise Control Unit's Good Practice Guide for Construction and Demolition

Prior to the commencement of work on the site a construction and demolition plan must be developed. When developing the construction and demolition plan reference must be made to the requirements of the Air Quality Monitoring and Noise Control Unit's Good Practice Guide for Construction and Demolition.

This Guide has been produced with reference to the London Good Practice Guide: Noise and Vibration Control for Demolition and Construction produced by the London Authorities Noise Action Forum, July 2016.

9.2 Environmental Noise Mitigation Measures

General Considerations:

- 1. All site staff shall be briefed on noise mitigation measures and the application of best practicable means to be employed to control noise.
- 2. Site hoarding should be erected to maximise the reduction in noise levels.
- 3. The contact details of the contractor and site manager shall be displayed to the public, together with the permitted operating hours, including any special permissions given for out of hours work.
- 4. In the event that The Contractor gets a complaint about noise from a neighbour he will act immediately to remedy the situation.
- 5. The site entrance shall be located to minimise disturbance to noise sensitive receptors.
- 6. Internal haul routes shall be maintained, and steep gradients shall be avoided.
- 7. Material and plant loading and unloading shall only take place during normal working hours unless the requirement for extended hours is for traffic management (i.e. road closure) or health and reasons (application must be made to local council a minimum of 4 days prior to proposed works).
- 8. Use rubber linings in chutes, dumpers, and hoppers to reduce impact noise.
- 9. Minimise opening and shutting of gates through good coordination of deliveries and vehicle movements.

Plant:

- 1. Ensure that each item of plant and equipment complies with the noise limits quoted in the relevant European Commission Directive 2000/14/EC.
- 2. Fit all plant and equipment with appropriate mufflers or silencers of the type recommended by the manufacturer.
- 3. Use all plant and equipment only for the tasks for which it has been designed.
- 4. Shut down all plant and equipment in intermittent use in the intervening periods between work or throttle down to a minimum.
- 5. Power all plant by mains electricity where possible rather than generators.
- 6. Maximise screening from existing features or structures and employ the use of partial or full enclosures for fixed plant.

- 7. Locate movable plant away from noise sensitive receptors where possible
- 8. All plant operators to be qualified in their specific piece of plant.
- 9. Compressors and generators will be sited in areas least likely to give rise to nuisance where practicable.

Vehicle activity:

- 1. Ensure all vehicle movement (on site) occur within normal working hours. (Other than where extension of work requiring such movements has been granted in cases of required road closures or for health and safety reasons).
- 2. Plan deliveries and vehicle movements so that vehicles are not waiting or queuing on the public highway, if unavoidable engines should be turned off.
- 3. Plan the site layout to ensure that reversing is kept to a minimum.
- 4. Where reversing is required use broadband reverse sirens or where it is safe to do so disengage all sirens and use banksmen.
- 5. Rubber/neoprene or similar non-metal lining material matting to line the inside of material transportation vehicles to avoid first drop high noise levels.
- 6. Wheel washing of vehicles prior to exiting the site shall take place to ensure that adjoining roads are kept clean of dirt and debris. Regular washing of adjoining streets should also take place as required by road sweepers.

<u>Demolition Phase:</u> (There are no demolition works anticipated on this development)

- 1. Employ the use of acoustic screening; this can include planning the demolition sequence to utilise screening afforded by buildings to be demolished.
- 2. If working out of hours for Health and Safety reasons (following approval by council) limit demolition activities to low level noise activity (unless absolutely unavoidable).
- 3. Use low impact demolition methods such as non-percussive plant where practicable.
- 4. Use rotary drills and 'bursters' activated by hydraulic or electrical power or chemically based expansion compounds to facilitate fragmentation and excavation of hard material.
- 5. Avoid the transfer of noise and vibration from demolition activities to adjoining occupied buildings through cutting any vibration transmission path or by structural separation of buildings.
- 6. Consider the removal of larger sections by lifting them out and breaking them down either in an area away from sensitive receptors or off site.

Ground Works and Piling Phase (as required):

- 1. The following hierarchy of groundwork/piling methods should be used if ground conditions, design and safety allows;
 - Pressed in methods, e.g., hydraulic jacking
 - Auger/bored piling
 - Diaphragm walling
 - Vibratory piling or vibro-replacement
 - Driven Piling or dynamic consolidation

- 2. The location and layout of the piling plant should be designed to minimise potential noise impact of generators and motors.
- 3. Where impact piling is the only option utilise a non-metallic dolly between the hammer and driving helmet or enclose the hammer and helmet with an acoustic shroud.
- 4. Consider concrete pour sizes and pump locations. Plan the start of concrete pours as early as possible to avoid overruns.
- 5. Where obstructions are encountered, work should be stopped, and a review undertaken to ensure that work methods that minimise noise are used.
- 6. When using an auger piling rig do not dislodge material from the auger by rotating it back and forth. Use alternate methods where safe to do so.
- 7. Prepare pile caps using methods which minimise the use of breakers, e.g., use hydraulic splitters to crack the top of the pile.

Monitoring:

- Carry out regular on-site observation monitoring and checks/audits to ensure that BPM is being used at all times. Such checks shall include;
 - Hours of work
 - Presence of mitigation measures
 - Number and type of plant
 - Construction methods
- 2. In the event that the contractor gets a complaint about noise from a neighbour he will act immediately to remedy the situation.
- 3. A sound level digital meter will be employed as necessary to monitor noise, with results recorded to inform the contractor of noise level.
- 4. Site reviews must be recorded and made available for inspection.
- 5. Appraise and review working methods, processes, and procedures on a regular basis to ensure continuous development of BPM.

Communication and Liaison:

- 1. A Community Liaison Plan should be developed by the developer in consultation with local residents/businesses and a single point of contact nominated to engage with Fingal County Council and the residents/businesses and to handle complaints and communication of site information.
- All site staff should be briefed on the complaints procedure and mitigation requirements and their responsibilities to register and escalate complaints received.

9.3 Risk Assessment & Mitigation

The Main Contractor shall deal with the immediate dangers to hearing etc. associated with high noise levels and the impact of same on construction operatives, by means of risk assessment and mitigation / precautionary measures and equipment, all pursuant to the current health and safety legislation.

Current legislation limits, assessment period of 8 hours of one week (noisiest 8 hours likely to experience):

 Lower Action Value (LAV) – 80 dBA L_{EX,8}, 135 dB Peak – Hearing Protection shall be made available and information shall be provided.

- Upper Action Value (UAV) 85 dBA L_{EX,8}, 137 dB Peak Use of Hearing Protection is mandatory, measures to eliminate the noise as much as possible shall be applied.
- Exposure Limit Value (ELV) 87 dBA L_{EX,8}, 140 dB Peak Not to be exceeded

Protection by ear plugs/muffs given by their Signal-to-Noise Ratio (SRN) or Noise Reduction Rating (NRR) is typically 20 - 30 dB.

• Exposure = L_{EX,8} - (SNR - 10)

As a guide, if it is difficult to hear a normal conversation at a distance of 2m or a workplace is consistently noisier than a busy street, it is likely that the noise levels in the area are above 80 dBA.

9.4 Potential Noise Sources

It is not envisaged that any excessively noisy activities to be carried out over extended periods of time during the construction stage. However, due to the nature of the construction works, exposure to noise levels in excess of 80 dBA (Safe Working Limit) may occur occasionally. The Main Contractor will carry out a noise assessment in relation to the proposed works at construction stage. The noise assessment shall identify, but not limited to, the following steps in its analysis;-

- 1. <u>Potentially Hazardous Activities:</u> Use of site machinery and power tools. For example, concrete saws, angle grinders, vibratory plate compactors etc.
- 2. Potential Hazards: Excessive noise
- 3. <u>Persons as Risk:</u> People in the vicinity of the work generating an excessive noise. These persons include employees, contractors, and members of the public.
- 4. Risk of Exposure to the Potential Hazard: Temporary or permanent hearing loss.
- 5. Risk Assessment before the Implementation of Control Measures: Medium
- 6. Risk Assessment after the Implementation of Control Measures: Low
- 7. Control Measures Implemented by: Site Manager / Works Supervisor

9.5 Mitigation Measures

The following control measures are to be implemented:-

- 1. Site Manager shall monitor a likelihood of prolonged exposure to excessive noise and commission noise surveying/monitoring programme where necessary.
- Works Supervisor shall assess risk arising from noise prior to each particular activity taking place and determine appropriate action. The aim shall be to minimise the exposure to excessive noise levels.
 - a. If it is likely that the noise exposure exceeds Lower Action Value, then hearing protection must be made available.
 - b. If it is likely that the noise exposure exceeds Upper Action Value, then hearing protection is mandatory to be used. Work Supervisor shall decide on the most suitable hearing protection to be used based on Exposure (see formula above) and worker's personal preference (earmuffs or earplugs).
- 3. Works Supervisor shall ensure proposed measures are put in place and that their effectiveness and suitability is evaluated on regular bases.

- 4. Site management shall minimise noise at work by looking for alternative processes and/or working methods, which would make the work quieter and/or exposure times shorter.
- 5. Site Manager shall liaise with all site contractors in order to effectively control noise exposure.
- 6. Number of people working near source of the noise shall be minimised.
- 7. Employees must use hearing protection where its use is made compulsory.
- 8. Hearing protection zones shall be identified where necessary.
- 9. Spot checks on appropriate use of hearing protection shall be carried out.
- 10. Operators of rock breaking machines and workers nearby must wear adequate ear protection.

9.6 Proper Use of Hearing Protection

- Earmuffs: Worker must make sure that they totally cover their ears, fit tightly and that there are no
 gaps around the seals. Hair, glasses, jewellery, hats etc. shall not interfere with the seal. Seals and
 insides of earmuffs shall be kept clean. Worker shall make sure that any headband keeps its
 tension.
- Earplugs: Workers shall make sure that they are wearing them properly. They shall practice fitting them and get help if they are having trouble. Hands shall be clean before fitting earplugs. Earplugs must not be shared with other workers.
- Semi-inserts/caps: Same applies as for earplugs. Worker shall make sure that any headband keeps its tension.

All workers are expected to:

- Co-operate: Help the Company to do what is needed to protect their hearing. Make sure that they use properly any noise control device and follow any working methods that are put in place.
- Wear any hearing protection they are given: Make sure that they are wearing it properly. They shall
 wear it all the time when they are exposed noisy environment (over UAV). Taking it off even for a
 short while means that the hearing could still be damaged.
- Look after their hearing protection.
- Report any problems: Report any problems with the hearing protection or effectiveness of the measures to the work supervisor.

10. Erosion and Sediment Control

10.1 Run-Off to Ditches

Significant quantities of waste and potential pollutants can be generated during construction. Controls must be put in place to prevent these pollutants from washing into the local storm water system which discharges to the Broadmeadow River via attenuation ponds (with forebay) to the northeast of the site.

Protection of the Broadmeadow River is paramount during the construction stage of the subject development. Temporary measures will be put in place to remove sediments, oils, and pollutants.

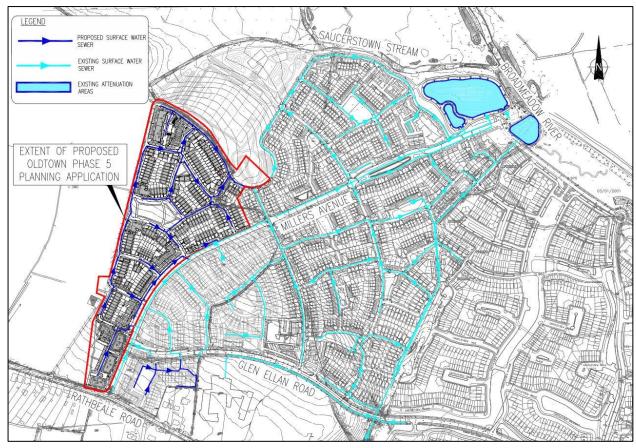


Figure 2 | Surface Water Drainage Network

The Inland Fisheries Ireland document: Guidelines on Protection of Fisheries During Construction Works in and Adjacent to Waters 2006, outlines the following areas to be considered for the protection of adjacent water courses during the construction stage

- 1. Damage to the aquatic and associated riparian habitat due to loss of vegetation, damage to banks, & changes in watercourse morphology & hydrology.
- 2. Pollution of waters due to construction materials.
- 3. Introduction of non-native species such as plants, algae, fish & shellfish.
- 4. Interference to the movement of aquatic life.
- 5. Timing of in-stream works on seasonal salmonid activity.

- 6. Temporary crossing structures in waters.
- 7. Permanent crossing structures in waters.
- 8. Construction impacts such as cast in-situ concrete, sediment laden surface water, hydrocarbon leaks & water abstraction.

In consideration of the above list the following methods listed, but not limited to, will be implemented on site as appropriate:

- 1. Fuels, oils, greases, and hydraulic fluids will be stored in bunded compounds well away from the watercourse/ditches. Refuelling of machinery, etc., will be carried out in bunded areas.
- 2. Runoff from machine service and concrete mixing areas will not enter the watercourse.
- 3. Stockpile areas for sands and gravel will be kept to minimum size, well away from the watercourse.
- 4. Runoff from the above will only be routed to the watercourse via suitably designed and sited settlement ponds/filter channels.
- 5. Settlement ponds will be inspected daily and maintained regularly.
- 6. Temporary crossings will be designed to the criteria laid down for permanent works.
- 7. Watercourse banks will be left intact if possible. If they have to be disturbed, all practicable measures should be taken to prevent soils from entering the watercourses.

The main pollutants of site water are silt, fuel/oil, concrete and chemicals. See *Table 4*, for a list and brief description of pollution prevention measures.

Source	Action		
Detergents	Use of detergents should be carried out in designated areas draining to the foul sewer.		
	Fuel/oil stores must be located away from the site drainage system and the edge of watercourses.		
	Ensure adequate measures are identified to prevent or contain any spillage such as creating a fall away from any drainage grid or blocking drainage points.		
Fuel/Oil	Prevent oil pollution by:		
	 Suitable bunded storage of fuel/oil, and use of drip trays under plant, and 		
	An oil separator, and/or		
	On-site spill-kit		
	 Commercially available absorbent granules, pads, or booms. 		
	Store drums, oil, and chemicals on an impervious base and within a secured bund.		
Material Storage	Ensure topsoil and/or spoil heaps are located at least 10m away from water courses. Consider seeding them or covering with a tarpaulin to prevent silty runoff and losses due to wind.		
Leaks and Spills	Storage facilities are to be checked on a regular basis to ensure any leaks or drips are fixed to prevent loss and pollution.		

	Ensure appropriate spill response equipment is located near to the material in case of containment failure or material spills and ensure site staff know how to use it.		
Adequate stocks of absorbent materials, such as sand or commer available spill kits and booms should be available at all times.			
Litter	Provide waste bins on-site as appropriate.		
Construction Vehicles	Provide vehicle wheel washing.		
Concrete, Cement and Bentonite	Washout of these materials should be carried out in a designated, impermeable contained area. The washout water itself should be disposed of off-site or discharged to the foul sewer if authorised.		

Table 4 | Pollution Prevention Measures

10.2 Sediment Control

Construction runoff is heavily laden with silt which can block road gullies and reduce the hydraulic capacity in pipes and rivers, contributing to ponding and flooding. Continued development without appropriate controls will ultimately keep maintenance costs elevated, whether that be in cleaning gullies, jetting pipes, or dredging. Sediment control plans can be implanted on site to mitigate these issues.

Sediment basins and traps should be installed before any major site grading takes place. Additional sediment traps and silt fences should be installed as grading takes place to keep sediment contained on site at appropriate locations.

Key runoff-control measures should be located in conjunction with sediment traps to divert water from planned undisturbed areas away from the traps and sediment-laden water into the traps. Diversions should be installed above the areas to be disturbed before any grading operations. Any perimeter drains should be installed with stable outlets before opening major areas for development. Any additional facilities needed for runoff control should be installed as grading takes place.

During grading operations temporary diversions, slope drains, and inlet and outlet protection installed in a timely manner can be very effective in controlling erosion and sediment build up.

The main run-off conveyance system with inlet and outlet protection measures should be installed early and used to convey stormwater run-off through the development site without creating gullies or channels. Install inlet protection for storm drains as soon as the drain is functional to trap sediment on site in shallow pools and to allow the flood flows to enter the storm drainage system safely. Install outlet protection at the same time as the conveyance system to prevent damage to the Broadmeadow River.

10.3 Sediment Control Measures

Sediment entrapment facilities are necessary to reduce sediment discharges to downstream properties and receiving waters. All run-off leaving a disturbed area should pass through a sediment entrapment facility before it exits the site and flows downstream.

- Straw Bales: Straw bales can be placed at the base of a slope to act as a sediment barrier. These
 are not recommended for use within a swale or channel. Straw bales are temporary in nature and
 may perform for only a period of weeks or months. Proper installation and maintenance is
 necessary to ensure their performance.
- Silt Fencing: A silt fence is made of a woven synthetic material, geotextile, and acts to filter run-off.
 Silt fencing can be placed as a temporary barrier along the contour at the base of a disturbed area

but is not recommended for use in a channel or swale. The material is durable and will last for more than one season if properly installed and maintained. Silt fencing is not intended to be used as a perimeter fence or in area of concentrated flow. If concentrated flow conditions exist, a more robust filter should be considered.

- Silt Barriers: Silt barriers can also be temporarily installed in any road gullies of partially constructed
 roads to prevent sediment movement into downstream drainage systems or SUDS components.
 When the catchment area is greater than that allowed for straw bale barriers or silt fences, runoff
 should be collected in diversion drains and routed through temporary sediment basins.
- Diversion Drains: Diversion drains are simple linear ditches, often with an earth bund, for channelling water to a desired location. If the drains are being eroded, they can be lined with geotextile fabric or large stones or boulders.

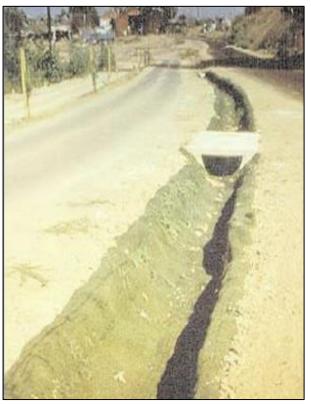


Figure 3 | Examples of Diversion Drains

11. Construction Phasing and Programme

11.1 Run-Off to Ditches

It is proposed that the site will be constructed in two phases as follows:-

- Stage 1 Site clearance and preparation work for the construction of the housing units and all associated infrastructure.
- Stage 2 Site development and construction of the residential units. The development includes all associated site works and infrastructure which includes landscaped open space, internal roads, paths, public lighting, utilities, foul and surface water drainage.

The construction programme is intended to be a 24-month programme.

Appendices

Site Investigation Report

S.I. Ltd Contract No: 5599

Client: Gannon Homes Ltd
Engineer: Waterman Moylan
Contractor: Site Investigations Ltd

Millers Glen – Phase 5,
Swords, Co. Dublin
Site Investigation Report

Prepared by:
Stephen Letch

Issue Date:	20/06/2019
Status	Final
Revision	1

Contents:		Page No.
1.	Introduction	1
2.	Fieldwork	1
3.	Laboratory Testing	3
4.	Ground Conditions	4
5.	Recommendations and Conclusions	5
Appendices	<u>s:</u>	

<u>A</u>

- Cable Percussive Borehole Logs 1.
- Trial Pit and Dynamic Probe Logs and Photographs 2.
- 3. Soakaway Test Results
- 4. Geotechnical Laboratory Test Results
- 5. **Environmental Laboratory Test Results**
- 6. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Millers Glen, Swords, Co. Dublin. The investigation was for the fifth phase of the Millers Glen residential development and was completed on behalf of the Client, Gannon Homes Ltd.

The fieldworks comprised a programme of cable percussive boreholes, trial pits with dynamic probes, soakaway tests and California Bearing Ratio tests. All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. Laboratory testing has been performed on representative soil samples recovered from the trial pits and these were completed in accordance of BS1377: 1990.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Fieldwork

The initial geotechnical fieldworks were started and completed in May 2019 and comprised the following:

- 13 No. cable percussive boreholes
- 41 No. trial pits with dynamic probes
- 6 No. soakaway tests
- 37 No. California Bearing Ratio tests

2.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 13 No. locations using a Dando 150 rig and constructed 200mm diameter boreholes. The boreholes terminated on obstructions at varying depths ranging from 4.10mbgl (BH01) to 7.50mbgl (BH09). It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g. BH01 at 1.00mbgl where

5599 - Millers Glen - Phase 5 Swords, Co. Dublin

N=15-(3,3/4,3,4,4)). Where refusal of 50 blows across the test zone was encountered was

achieved during testing, the penetration depth is also reported (e.g. BH01 at 4.00mbgl where

N=50-(25 for 5mm/50 for 0mm)).

The logs are presented in Appendix 1.

2.2. Trial Pits and Dynamic Probes

41 No. trial pits were excavated using a wheeled excavator. At TP35, an additional pit was

excavated due to the original location encountering shallow obstructions at 1.40mbgl. The pits

were logged and photographed by SIL geotechnical engineer and representative disturbed bulk

samples were recovered as the pits were excavated, which were returned to the laboratory for

geotechnical testing.

Adjacent to the trial pits, dynamic probes were completed using a track mounted Competitor

130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and

Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method

comprising a 50kg weight, 500mm drop height and a 50mm diameter (90°) cone. The number

of blows required to drive the cone each 100mm increment into the sub soil is recorded in

accordance with the standards. The dynamic probe provides no information regarding soil type

or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered

by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory

Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most

relevant to Irish soil conditions and within this paper the following equations were included:

Granular Soils: DPH N₁₀₀ x 2.5 = SPT N value

Cohesive Soils: $C_u = 15 \times DPH N_{100} + 30 \text{ kN/m}^2$

These equations present a relationship between the probe N₁₀₀ value and the SPT N value

for granular soils and the undrained shear strength of cohesive soils.

The trial pit logs with the dynamic probe results are presented in Appendix 2 along with the

photographs.

2.3. Soakaway Tests

At 6 No. locations, soakaway tests were completed and logged by SIL geotechnical engineer.

The soakaway test is used to identify possible areas for storm water drainage. The pit was filled

with water and the level of the groundwater was recorded over time. As stipulated by BRE

Special Digest 365, the pit should be filled three times and that the final cycle is used to provide

2

the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The results are provided in Appendix 3.

2.4. California Bearing Ratio tests

At 37 No. locations, undisturbed cylindrical mould samples were taken to complete California Bearing Ratio tests in the laboratory. 19 No. samples were recovered from independent locations and 18 No. samples were recovered from trial pits when the two locations were adjacent to each other. The results facilitate the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'. The results are presented as part of Appendix 4 with the geotechnical laboratory test data.

2.5. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 6.

3. Laboratory Testing

Geotechnical laboratory testing is currently ongoing on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 5 No. Moisture contents
- 5 No. Atterberg limits
- 5 No. Particle size gradings
- 5 No. pH, sulphate and chloride content

Environmental testing has been scheduled and is being completed by ALS Environmental Ltd. and consists of the following:

• 5 No. Rilta Suite analysis

The geotechnical laboratory test results are presented in Appendix 4 with the environmental tests reported in Appendix 5.

4. Ground Conditions

4.1. Overburden

A generalised summary of the ground profile is shown below. Reference should be made to the individual borehole and trial pit records in Appendices 1 and 2 for the full strata information at specific locations.

- TOPSOIL.
- Brown sandy slightly gravelly silty CLAY with low cobble content.
- Firm grey brown sandy slightly gravelly silty CLAY with low cobble content.
- Stiff becoming very stiff black slightly sandy gravelly silty CLAY with low cobble content.

MADE GROUND was encountered in 8 No. boreholes and in 8 No. trial pits and extended to a maximum depth of 2.50mbgl at TP27. The locations are generally around the area of the site previously used as a compound for the previous phases of the development and mainly consist of cohesive clay soils with construction waste fragments.

The natural soils consist of over-consolidated lodgment till which is encountered across the North Dublin region with several papers discussing the engineering characteristics of the soil. The brown soils are the weathered surface of the underlying black clays and the gravel and cobbles are generally subrounded to subangular and predominantly limestone in origin. The boundary between the brown soil and the black soil in the boreholes is between 1.60mbgl (BH09) and 3.50mbgl (BH12). The SPT N-values show an increase in blow counts when the black soils are encountered, and this also increases steadily with depth.

The laboratory testing of the soils recorded moisture contents between 10.4% and 15.4% with low plasticity index results between 10 and 14, which indicates CLAY soils with low and intermediate plasticity. The grading curves show poorly graded straight-line profiles with 18% to 36% fines content.

4.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater was recorded in 5 of the boreholes with the shallowest strike at 1.60mbgl and the deepest at 5.00mbgl. Groundwater was also encountered in 12 trial pits between 0.40mbgl and 2.20mbgl and these were all recorded as seepages.

5.0. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

5.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

SIL do not recommend that shallow foundations are placed on fill material due to the unknown compaction methods used during laying of man-made material. This unknown could result in softer spots and differential settlement of a building once construction is completed. If shallow foundations are to be used and man-made soils are encountered below foundation level, then this soil should be removed and replaced with engineered fill.

The natural ground conditions recorded in the boreholes is generally firm brown slightly sandy gravelly silty CLAY with low cobble content at 1.00mbgl. The SPT test results are consistent with values of 9 to 16 recorded at 1.00mbgl. Therefore, for the analysis an N-value of 9 was chosen for the purposes of design in this stratum, in accordance with Eurocode 7 (EC 7).

Stroud and Butler proposed a correlation between the SPT N-value and undrained shear strength using the Atterberg Limits and using the indices of 14%, a correlation of Cu=6N has been chosen for this site. Therefore, using the value of 9, this indicates that the undrained shear strength of the CLAY is 54kN/m². This can be used to calculate the ultimate bearing capacity, and this has been calculated to be 300kN/m². Finally, a factor of safety is applied and with a

factor of 3, an allowable bearing capacity of 100kN/m² would be anticipated using these SPT values.

BH08 recorded a slightly lower value of 6 but stiffer soils were recorded at 1.60mbgl and therefore, foundations may require to be deeper than 1.00mbgl if soft spots or fill material are encountered across the site.

If higher bearing capacities were required, then the lower black CLAY could be founded on. This recorded an SPT range of 17 to 35 at 2.00mbgl and using this lower value, an ultimate bearing capacity of 555kN/m² and therefore, an allowable bearing capacity of 185kN/m² would be anticipated.

As previously discussed, papers have been published about the North Dublin soils and there engineering characteristics. These values recorded on site would be slightly lower than expected for this type of soil with the brown clay normally providing approximately 150kN/m^2 allowable bearing capacity with the stiffer black clay offering 300kN/m^2 allowable bearing capacity. However, it would still be important that all founding strata be examined by a qualified engineer prior to the pouring of the foundations to confirm the suitability of the soil for the design foundations.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type (described above).
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- All bearing capacity calculations allow for a settlement of 25mm.

The trial pits indicate that excavations in the cohesive soils should be stable for a short while at least. However, regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

5.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was encountered in 5 of the boreholes and 12 of the trial pits with slow ingress rates. There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. However, based on this information at the exploratory hole locations to date, it is considered likely that any seepages into excavations of the CLAY will be slow. If granular soils are encountered, then the possibility of water ingressing into an excavation increases.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

5.3. Soakaway Tests

The soakaway tests show that generally the areas of the site tested are unsuitable for soakaway design. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e. well compacted clay soils.

5.4. Pavement Design

The plate test results in Appendix 4 indicate CBR values are generally greater than 5% although lower values of 3.8% (CBR33), 4.2% (CBR32) and 4.7% (CBR25) were recorded.

The samples were taken at 0.50mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

5.5. Contamination

Environmental testing was carried out on five samples from the investigation and the results are shown in Appendix 5. For material to be removed from site, Rilta Suite testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline™ software shows that the material tested can be classified as non-hazardous material. The Total Petroleum Hydrocarbon (TPH) results did record a level above the limit of detection, but the level was low and not in liquid form so therefore, the sample can be recorded as non-hazardous.

Following this analysis of the solid test results, the leachate disposal suite results indicate that the soils tested would generally be able to be treated as Inert Waste. However, the fluoride, sulphate, total dissolved solids and total monohydric phenols results were slightly elevated above the Inert threshold and therefore, these results should be sent to the individual landfill to ensure that the material can be accepted prior to excavation.

Only five samples were tested for analysis and therefore, any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

5.6. Aggressive Ground Conditions

The chemical test results in Appendix 4 indicate a general pH value between 7.89 and 8.07, which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was 130 mg/l as SO_3 . The BRE Special Digest 1:2005 – 'Concrete in Aggressive Ground' guidelines require SO_4 values and after conversion ($SO_4 = SO_3 \times 1.2$), the maximum value of 156 mg/l shows Class 1 conditions and no special precautions are required.

Appendix 1 Cable Percussive Borehole Logs

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Millers Glen - Phase 5	Easting	j:	716173	3.830		Date Started:	27/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748313	3.669		Date Completed:	27/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	32.86			Drilled By:	T. Tin	dall	
Engine	er:	Waterman Moylan	Boreho Diamet		200mm	า		Status:	FINA	L	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill
Scale _	Depth 0.10	TOPSOIL.		Scale	Depth 32.76	Depth	Туре	Result		Strike	
0.5		Firm brown slightly sandy gravelly silty CLAY with low cobble content.		32.5 — - - - 32.0 —							
1.0 -				31.5	-	1.00	B C	TT01 N=15 (3,3/4,	3,4,4)		
2.0 —	1.70	Stiff becoming very stiff black slightly sandy gravelly silty CLAY with low cobble content.		31.0	31.16	2.00	B C	TT02 N=29 (5,7/6,	6,8,9)		
3.0				30.0 —		3.00 3.00	B C	TT03 N=47 (7,7/9,11,13	3,14)		
3.5 — — — 4.0 —		Obstruction - possible boulder. Borehole terminated due to obstruction.		29.0	28.86 28.76	4.00	С	50 (25 fo 5mm/50 for			
4.5 -		End of Borehole at 4.10m		28.5 — - - - 28.0 —							
5.5 —				27.5 — - - - 27.0 —							
6.0 —				26.5	-						
7.0				26.0 - - - - 25.5 -	-						
7.5 -				25.0							
8.0 — - - 8.5 —				24.5 —							
9.0				24.0							
9.5 —				23.5							
=				23.0							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Seale	Install From: To		e: From:	Backfill: To: Typ 1.10 Aris		Remarks: sorehole terminate o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sg	urbed onmental

Contra		Cable Percussio	n Bo	orel	nole	Log	J		В	orehole BH0	
Contrac	ot:	Millers Glen - Phase 5	Easting	j :	716186	6.310		Date Started:	28/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748346	6.488		Date Completed:	28/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	31.64			Drilled By:	T. Tin	dall	
Engine	er:	Waterman Moylan	Boreho		200mm	1		Status:	FINA	L	
Depti	n (m)	Stratum Description	Legend	Level	(mOD)		ples	and Insitu Tes	sts	Water	Backfil
Scale _	Depth	TOPSOIL.	g	Scale 31.5 -	Depth	Depth	Туре	Result		Strike	
0.5	0.20	Stiff brown slightly sandy gravelly silty CLAY with low cobble content.	X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	31.0	31.44						
1.0			x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0	30.5		1.00 1.00	ВС	TT04 N=18 (4,3/4,	4,5,5)		
1.5			× × ×	30.0 —							
2.0	1.80	Stiff becoming very stiff black slightly sandy gravelly silty CLAY with low cobble content.	x	29.5	29.84	2.00 2.00	ВС	TT05 N=35			
2.5				29.0				(6,7/6,8,10),11)		
3.0				28.5 —		3.00 3.00	B C	TT06 N=50 (9,11/5 250mm			
3.5 —				28.0 —		4.00	В	TT07			
4.0 -	4.30 4.40	Obstruction - possible boulder. Borehole terminated due to obstruction.		27.5 -	27.34 27.24	4.00 4.00 4.40	C	50 (8,13/50 80mm) 50 (25 fo)		
5.0		End of Borehole at 4.40m		27.0 — - -	-			5mm/50 for			
=				26.5							
5.5 -				26.0							
6.0				25.5 — -	-						
6.5				25.0							
7.0				24.5	- - -						
7.5				24.0							
8.0 —				23.5 -	-						
8.5				23.0							
9.0				22.5	-						
9.5				22.0							
		Chiselling: Water Strikes: Water Details:	Install			Backfill:		Remarks:		Legend: B: Bulk	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: Depth:	From: To	o: Pipe	0.00 4	To: Type .40 Arising		Borehole terminater or obstruction.	a due	D: Disturb U: Undistr ES: Environ W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Millers Glen - Phase 5	Easting):	716201	1.740		Date Started:	28/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748380).797		Date Completed:	28/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	30.79			Drilled By:	J. O'	ГооІе	
Engine	er:	Waterman Moylan	Boreho Diamet		200mm	1		Status:	FINA	L	
Depth	. ,	Stratum Description	Legend	Level	(mOD)		mples	and Insitu Tes		Water	Backfill
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 -	0.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content.		30.5	30.59	1.00	В	JOT54			
1.5 —	1.80	Stiff becoming very stiff black slightly sandy gravelly silty CLAY with low cobble content.		29.5	28.99	2.00 2.00	C B C	JOT55 N=19 (2,3/4,	,		
2.5 - 3.0 - 3				28.5		3.00	В	JOT56			
3.5 —				27.5 —		3.00 4.00	СВ	N=23 (2,3/5,			
4.5	4.80	Obstruction - possible boulder.		26.5 —	25.99	4.00	Ċ	50 (6,7/50 125mm	for)		
5.0 —	5.00	Borehole terminated due to obstruction. End of Borehole at 5.00m		25.5	25.79	5.00 5.00	B C	JOT58 50 (25 fo 5mm/50 for	or		<i>Y//</i> >>//>>
6.0 —				24.5							
7.0				24.0							
7.5				23.5 —							
8.0 -				22.5							
9.0				22.0							
9.5 —				21.5 —							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth:	Install From: To	_	: From:	Backfill: Fo: Typ .00 Arisi		Remarks: orehole terminate o obstruction.		Legend: B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Millers Glen - Phase 5	Easting	j:	716199	9.260		Date Started:	24/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748431	.387		Date Completed:	24/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	29.65			Drilled By:	J. O'	ГооІе	
Engine	er:	Waterman Moylan	Boreho Diamet		200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill
Scale		MADE GROUND: brown sandy slightly gravelly silty clay with low cobble content and some brick and plastic.		29.5 -	Depth	Depth	Туре	Result		ounto	
0.5 — 1.0 — 1.5 —	0.70	Firm brown slightly sandy gravelly silty CLAY with low cobble content.		29.0	28.95	1.00 1.00	ВС	JOT44 N=14 (2,3/3,			
2.0		Very stiff black slightly sandy gravelly silty CLAY with low cobble content.		28.0 — 27.5 — 27.5 —	27.55	2.00	ВС	JOT45 N=32 (2,4/7,7,8,			
3.0	2.80	Very stiff grey brown sandy slightly gravelly silty CLAY.		26.5 -	26.85	3.00 3.00	B C	JOT46 N=48 (4,7/7,10,16,15)			
4.0		Very stiff grey brown slightly sandy gravelly silty CLAY with low cobble content.	× × × × × × × × × × × × × × × × × × ×	25.5 -	25.15	4.00 4.00	B C	JOT47 N=30 (3,4/7,			
5.0 —		with low cobble content.		24.5		5.00 5.00	B C	JOT48 N=46 (4,7/9,9,12			
6.0 —		Obstruction - possible boulder. Borehole terminated due to obstruction. End of Borehole at 6.00m		23.5 -	23.85	6.00	С	50 (25 fo 5mm/50 for			
7.0 —				23.0 —	-						
7.5 —				22.0	-						
8.0 —				21.5	-						
8.5 — - - 9.0 —				21.0	- - - - -						
9.0 —				20.5							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth	Install From: To		e: From:	Backfill: Fo: Typ .00 Arisin		Remarks: orehole terminated o obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental

Contra		Cable Percussion	n Bo	orel	nole	Log	9		В	orehole BH0	
Contrac	ot:	Millers Glen - Phase 5	Easting	J:	716170	0.020		Date Started:	27/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748448	3.030		Date Completed:	27/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	29.46			Drilled By:	J. O'	Toole	
Engine	er:	Waterman Moylan	Boreho Diamet		200mm	า		Status:	FINA	.L	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill
Scale	Depth	MADE GROUND: grey silty sandy gravel.		Scale	Depth	Depth	Туре	Result		Strike	
0.5	0.50 0.80	MADE GROUND: black sandy slightly gravelly silty clay with low cobble content and some brick. Firm becoming stiff brown slightly sandy gravelly silty	P-0-7	29.0	28.96						
1.0 —		CLAY with low cobble content.		28.5 —		1.00	B C	JOT49 N=10 (1,1/2,			
2.0				27.5		2.00 2.00	B C	JOT50 N=16 (2,2/3,			
3.0	2.80 3.00	Black slightly sandy gravelly silty CLAY. Stiff becoming very stiff brown slightly sandy gravelly silty CLAY.		26.5 —	26.66 26.46	3.00 3.00	B C	JOT51 N=28 (2,3/5,			
4.0				25.5 — 25.5 —	-	4.00 4.00	B C	JOT52 N=36 (4,7/7,9,9,			
4.5 -	4.80	Very stiff grey slightly sandy gravelly silty CLAY with low cobble content.	X X X X	25.0 — - - 24.5 —	24.66	5.00	В	JOT53	3		
5.5	5.40 5.50	Obstruction - possible boulder. Borehole terminated due to obstruction. End of Borehole at 5.50m	X X	24.0	24.06 23.96	5.00 5.50	C	50 (11,12/5 225mm 50 (25 fo 5mm/50 for	ı) or		
6.0		Elid di Boleliole al 3.30iii		23.5							
6.5 —				23.0 — - - - - 22.5 —							
7.5				22.0							
8.0				21.5							
8.5 —				21.0							
9.0				20.5 —							
9.5 —				20.0 —							
		Chiselling: Water Strikes: Water Details:	Install	ation:	 	Backfill:		Remarks:		Legend:	
		Double Halls Makes	From: To		: From:	To: Typ 5.50 Arisir		orehole terminate o obstruction.	d due	B: Bulk D: Disturb U: Undisto ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental

Contract No	Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contract:	Millers Glen - Phase 5	Easting	j:	716227	7.020		Date Started:	23/05	5/2019	
Location:	Swords, Co. Dublin	Northin	g:	748511	.910		Date Completed:	23/05	5/2019	
Client:	Gannon Homes Ltd	Elevation	on:	26.94			Drilled By:	J. O'	ГооІе	
Engineer:	Waterman Moylan	Boreho		200mm	1		Status:	FINA	L	
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill
Scale Dept	MADE GROUND: brown sandy slightly gravelly silty clay with low cobble content and some brick and plastic.		26.5	Depth	Depth	Type				
1.0 — 1.40	Stiff brown sandy slightly gravelly silty CLAY.	X - X - X - X - X - X - X - X - X - X -	25.5 -	25.54	1.00 1.00 2.00 2.00	B C B C	JOT34 N=8 (0,1/2,2 JOT35 N=19 (2,3/4,	2,2,2)		
2.5 = 2.40	cobble content.		24.5 —	24.54	3.00	В	JOT36			
3.5	Very stiff dark grey slightly sandy gravelly silty CLAY with low cobble content.		23.5 -	20.04	3.00	С	N=31 (3,5/7,	6,9,9)		
4.0			22.5 -		4.00 4.00	B C	JOT37 N=50 (7,8/5 240mm	0 for		
5.0			22.0 — - - - 21.5 — -	-	5.00 5.00	B C	JOT38 N=31 (5,5/6,			
6.0 - 5.90		1	21.0	21.04 20.94	6.00	С	50 (25 fo 5mm/50 for			
7.0			20.0 —	-						
7.5 —			19.0							
8.5			18.5 —							
9.0			18.0 — - - - 17.5 —	-						
	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth Depth: Depth: <td>Install From: To</td> <td></td> <td>e: From:</td> <td>Backfill: To: Typ .00 Arisi</td> <td></td> <td>Remarks: orehole terminate o obstruction.</td> <td>d due</td> <td>Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp</td> <td>urbed onmental</td>	Install From: To		e: From:	Backfill: To: Typ .00 Arisi		Remarks: orehole terminate o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental

Contra		Cable Percussio	n Bo	orel	nole	Log	j		В	orehole BH0	
Contrac	ct:	Millers Glen - Phase 5	Easting	j:	716243	3.650		Date Started:	22/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748621	.941		Date Completed:	22/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	23.57			Drilled By:	J. O'	ГооІе	
Engine	er:	Waterman Moylan	Boreho		200mm	1		Status:	FINA	L	
Deptl	h (m)	Stratum Description	Legend	l evel	(mOD)	Sam	ples	and Insitu Tes	ts	Water	Backfil
Scale -	Depth	MADE GROUND: brown sandy slightly gravelly silty		Scale 23.5 -	Depth	Depth	Туре	Result		Strike	
0.5		clay with low cobble content and some brick and plastic.		-							
=				23.0 —							
1.0				22.5		1.00 1.00	B C	JOT29 N=4 (0,1/1,0			
1.5				22.0							
2.0	1.80 2.00	MADE GROUND: brown black sandy slightly gravelly		-	21.77 21.57	2.00	В	JOT30			
		silty clay with low cobble content and some brick and plastic. Stiff black slightly sandy gravelly silty CLAY with low	× × · ·	21.5 – - -		2.00	Ċ	N=17 (2,3/4,			
2.5 —	0.00	cobble content.	× × ×	21.0	00.77						
3.0	2.80	Stiff becoming very stiff grey slightly sandy gravelly silty CLAY.	×	20.5 -	20.77	3.00	В	JOT31			
3.5			X——×	- -		3.00	С	N=25 (2,4/6,	6,6,7)		
-			×	20.0 —							
4.0			X	19.5	-	4.00 4.00	B C	JOT32 50 (6,7/50			
4.5	4.60		×	19.0 —	18.97			25mm)	1		
-		Grey slightly sandy gravelly silty CLAY with low cobble content.	x - 0 - X	-		5.00	_	IOTAA			
5.0 —	5.00	Obstruction - possible boulder. Borehole terminated due to obstruction.		18.5 -	18.57	5.00 5.00	B C	JOT33 50 (25 fo 5mm/50 for	or		
5.5		End of Borehole at 5.00m		18.0				311111/30 101	OIIIII)		
6.0				17.5 –							
=				-							
6.5				17.0 —							
7.0				16.5							
7.5				16.0 —							
=				10.0 —							
8.0 —				15.5							
8.5				15.0	-						
9.0				-							
3.0 - -				14.5 -							
9.5				14.0							
/II		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Water Depth: Depth Depth Depth: Depth Dept	Install From: To			Backfill:	· F	Remarks:	d due	Legend: B: Bulk	l and
(\	(10 11111e Strike Rose Sealed Date Depth:		. , ipe	0.00 5			o obstruction.	5	D: Disturb U: Undist ES: Envir W: Water	urbed onmental
6										C: Cone S S: Split sp	SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ct:	Millers Glen - Phase 5	Easting	j:	716256	5.480		Date Started:	22/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748690	0.585		Date Completed:	22/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	20.91			Drilled By:	J. O'	ГооІе	
Engine	er:	Waterman Moylan	Boreho Diamet		200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfill
Scale	Depth	Soft brown slightly sandy gravelly silty CLAY with low	** ^* o -*X	Scale	Depth	Depth	Туре	Result		Strike	
0.5 -		cobble content.		20.5		1.00	В	JOT25			
1.5 —	1.60	Stiff brown slightly sandy gravelly silty CLAY with low		19.5 —	19.31	1.00	С	N=6 (1,1/1,2	2,1,2)		
2.0	2.60	cobble content.		19.0 — - - - 18.5 —	18.31	2.00 2.00	B C	JOT26 N=22 (2,4/5,			
3.0	0.00	Black slightly sandy gravelly silty CLAY with low cobble content. Stiff becoming very stiff brown slightly sandy gravelly silty CLAY.		18.0	18.11	3.00 3.00	B C	JOT27 N=26 (2,3/6,			
3.5 -				17.5 — - - - 17.0 —		4.00 4.00	B C	JOT28 N=50 (2,7/5			
4.5 -		Obstruction - possible boulder. Borehole terminated due to obstruction. End of Borehole at 4.50m		16.5 -	16.51 16.41	4.50	С	250mm 50 (25 fo 5mm/50 for) or		
5.5				15.5 —							
6.0 -				15.0 — - - - 14.5 —							
7.0				14.0							
7.5 -				13.5 -							
8.0				13.0							
8.5				12.5 — - - -	-						
9.0				12.0 —							
9.5 —				11.5 — - - - 11.0 —							
		Chiselling: Water Strikes: Water Details:	Install	ation:	E	Backfill:		Remarks:		Legend:	
		Doubt Hale Webs	From: To	o: Pipe		To: Typ		orehole terminate o obstruction.	d due	B: Bulk D: Disturb U: Undisto ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Log	9		В	orehole BH0	
Contra	ot:	Millers Glen - Phase 5	Easting	J:	716287	7.710		Date Started:	21/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748869	9.142		Date Completed:	21/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	18.34			Drilled By:	J. O'	ГооІе	
Engine	er:	Waterman Moylan	Boreho Diamet		200mm	1		Status:	FINA	L	
Deptl		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfi
Scale	Depth	MADE GROUND: brown sandy slightly gravelly silty clay with low cobble content and some brick and plastic.		18.0 —	Depth	Depth	Type	Result		Ourke	
1.0	1.00	Firm brown slightly sandy gravelly silty CLAY with low cobble content.	X 0 - X	17.5 — - - - 17.0 —	17.34	1.00 1.00	B C	JOT18 N=11 (1,2/2,			
1.5 — - 2.0 — - 2.5 —	1.60	Stiff becoming very stiff black slightly sandy gravelly silty CLAY with low cobble content.		16.5	16.74	2.00 2.00	B C	JOT19 N=19 (3,4/3,			
3.0				15.5 -		3.00 3.00	ВС	JOT20 N=32 (2,6/7,			
4.0				14.5		4.00 4.00	B C	JOT21 N=19 (2,3/3,			
4.5 — 5.0 — 5.5 —				13.5 —		5.00 5.00	B C	JOT22 N=31 (2,4/7,			
6.0 —				12.5		6.00 6.00	B C	JOT23 N=47 (4,7/9,12,12			
7.0	7.40			11.5 -	10.94	7.00 7.00	ВС	JOT24 50 (6,10/50 125mm	o for		
7.5 —	7.50	Obstruction - possible boulder. Borehole terminated due to obstruction. End of Borehole at 7.50m		10.5	10.84	7.50	С	50 (25 fo 5mm/50 for			
8.5 —				10.0							
9.0				9.5 — - - -							
9.5 —				9.0 — - - - 8.5 —							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth Depth: Water Details: 7.40 7.50 01:00 1.60 1.50 2.80 21/05 7.50 Dry	Install From: To	_	: From: 7	Backfill: To: Typ .50 Arisir		Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturk U: Undist ES: Envir W: Water C: Cone S	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Log	3		В	orehole BH1	
Contrac	ct:	Millers Glen - Phase 5	Easting	j:	716331	1.870		Date Started:	20/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748840	0.936		Date Completed:	20/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	18.54			Drilled By:	J. O'	Toole	
Engine	er:	Waterman Moylan	Boreho		200mm	1		Status:	FINA	L	
Depti		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfi
Scale	Depth	MADE GROUND: brown sandy slightly gravelly silty clay with low cobble content and some brick and plastic.		Scale	Depth	Depth	Type	Result		Ottike	
1.0				18.0 — - - - 17.5 —		1.00 1.00	B C	JOT12 N=17 (1,2/3,			
1.5 —	1.60	Very stiff brown slightly sandy gravelly silty CLAY with low cobble content.	0 X 0 C	17.0	16.94	1.00	Ü	(1,2/0,	1,0,0,		
2.0 —		low copple content.		16.5	-	2.00 2.00	B C	JOT13 N=32 (3,4/7,			
3.0	2.80	Very stiff dark grey slightly sandy gravelly silty CLAY with low cobble content.		16.0 — - - - 15.5 —	15.74	3.00 3.00	B C	JOT14 N=45			
3.5 —				15.0		3.00	C	(2,4/9,11,12			
4.0			X	14.5		4.00 4.00	B C	JOT15 N=50 (6,9/5 250mm	0 for		
4.5 — - 5.0 —			8 0 X 0 X	14.0 — - - - 13.5 —	-	5.00	В	JOT16			
5.5 —			X	13.0		5.00	С	50 (10,11/5 125mm	0 for)		
6.0	6.20 6.30	Obstruction - possible boulder.		12.5	12.34 12.24	6.00 6.00 6.30	B C C	JOT17 50 (10,13/5 50mm)	0 for		
6.5 —	0.00	Borehole terminated due to obstruction. End of Borehole at 6.30m		12.0 — - - - - 11.5 —				50 (25 for 5mm/50 for	or		
7.5				11.0							
8.0				10.5							
8.5				10.0							
9.0 —				9.5 - - - 9.0 -							
-				9.0 — - - -							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth: Water Details: 5.30 5.40 00:45 1.60 1.50 3.00 20/05 6.30 Dry 6.20 6.30 01:00	Install			Backfill: Type 30 Arisin		Remarks: lorehole terminate o obstruction.		Legend: B: Bulk D: Disturb U: Undist ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH1	
Contrac	ct:	Millers Glen - Phase 5	Easting	j:	716392	2.760		Date Started:	17/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748754	1.806		Date Completed:	17/05	5/2019	
Client:		Gannon Homes Ltd	Elevation	on:	17.57			Drilled By:	J. O'	ГооІе	
Engine	er:	Waterman Moylan	Boreho Diamet		200mn	ı		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)		mples	and Insitu Tes		Water	Backfill
Scale	Depth	MADE GROUND: brown sandy slightly gravelly silty		Scale 17.5 -	Depth	Depth	Туре	Result		Strike	
0.5		clay with low cobble content and some brick and plastic.		17.0 —							
1.0				-		1.00	В	JOT06	i		
-	1.20	Firm becoming stiff grey brown slightly sandy gravelly		16.5 — - -	16.37	1.00	Ċ	N=10 (1,2/2,			
1.5 —		silty CLAY with low cobble content.	× × · ·	16.0							
2.0			× · · ·	15.5		2.00 2.00	B C	JOT07 N=30 (4,5/6,			
2.5	0.00		x x	15.0 —	44.07	2.00	O	14-50 (4,5/0,	7,3,0)		
=	2.60	Very stiff brown sandy slightly gravelly silty CLAY.	X-X-X X-X-X	15.0	14.97	0.00	1	LOTO			
3.0			XX	14.5		3.00	B C	JOT08 N=41 (4,7/9,10,10			
3.5			X	14.0				(4,779,10,10	J, 1 <i>Z)</i>		
4.0			X-X-X	13.5		4.00	В	JOT09			
4.5			XX XX	- - -	-	4.00	С	N=50 (3,6/5 275mm			
4.0 - -	4.80	Very stiff brown slightly sandy gravelly silty CLAY with	X X	13.0 —	12.77						
5.0		low cobble content.	× × ×	12.5		5.00 5.00	B C	JOT10 N=50			
5.5			x x	12.0 —				(5,7/10,11,1	4,15)		
6.0				- -		6.00	В	JOT11			
	6.20 6.30	Obstruction - possible boulder.		11.5 — - - -	11.37 11.27	6.00 6.30	00	50 (12,13/5 25mm)	0 for		
6.5		Borehole terminated due to obstruction. End of Borehole at 6.30m		11.0				50 (25 for 5mm/50 for	or		
7.0				10.5							
7.5 —				10.0 —							
				-							
8.0 —				9.5 -							
8.5 —				9.0							
9.0				8.5 —							
9.5				- - -							
3.5				8.0 — - -							
		Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:	
			From: To		e: From:	To: Typ 3.30 Arisi		orehole terminated obstruction.	d due	B: Bulk D: Disturb U: Undist ES: Envir W: Water C: Cone S	urbed onmental

	act No: 99	Cable Percussion	n Bo	orel	nole	Log		В	orehole BH1	
Contra	ct:	Millers Glen - Phase 5	Easting	J:	716448	3.980	Date Started:	16/05	5/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748663	3.363	Date Completed:	16/05	5/2019	
Client:		Gannon Homes Ltd	Elevati	on:	18.00		Drilled By:	J. O'	Toole	
Engine	er:	Waterman Moylan	Boreho Diamet		200mm	1	Status:	FINA	L	
_	h (m)	Stratum Description	Legend		(mOD)		es and Insitu Tes		Water Strike	Backfill
Scale	Depth 0.90	MADE GROUND: brown sandy slightly gravelly silty clay with low cobble content and some brick and plastic. Very stiff brown slightly sandy gravelly silty CLAY with	- 0 × 0 G	Scale	Depth 17.10	Depth Typ				
1.5		low cobble content.		16.5		1.00 C				
2.0 —				16.0 — 		2.00 B 2.00 C				
3.0	2.80	Very stiff brown sandy slightly gravelly silty CLAY.		15.0	15.20	3.00 B 3.00 C				
3.5	3.50	Very stiff dark grey slightly sandy gravelly silty CLAY with low cobble content.								
4.5				13.5		4.00 C	N=40 (3,7/7,9,12			
5.0 —	5.20 5.30	Obstruction - possible boulder.	* * * * * * * * * * * * * * * * * * *	13.0	12.80 12.70	5.00 B 5.00 C 5.30 C	50 (10,15/5	0 for		
5.5 -	5.50	Borehole terminated due to obstruction. End of Borehole at 5.30m		12.5 —	12.70	0.00	50 (25 fo 5mm/50 for	or		
6.5				11.5						
7.0				11.0						
7.5				10.5 —						
8.0 — - - 8.5 —				10.0 — - - - 9.5 —						
9.0				9.0						
9.5 —				8.5 —						
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: D	Install From: To			Backfill: To: Type: .30 Arisings	Remarks: Borehole terminate to obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental

Contract 559		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH1	
Contrac	t:	Millers Glen - Phase 5	Easting	g:	716363	3.050		Date Started:	23/05	5/2019	
Location	n:	Swords, Co. Dublin	Northin	ıg:	748603	3.479		Date Completed:	24/05	5/2019	
Client:		Gannon Homes Ltd	Elevati	on:	22.06			Drilled By:	J. O'	ГооІе	
Enginee	er:	Waterman Moylan	Boreho Diamet		200mn	า		Status:	FINA	L	
Depth	. ,	Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill
-	Depth 0.20	TOPSOIL. Soft brown sandy slightly gravelly silty CLAY.	<u> </u>	Scale	Depth 21.86	Depth	Туре	Result		Strike	
0.5 —			X	21.5 —		1.00	В	JOT39			
1.5	1.20	Firm brown slightly sandy gravelly silty CLAY with low cobble content.		20.5	20.86	1.00	С	N=13 (1,1/3,			
2.0	2.00	Very stiff black slightly sandy gravelly silty CLAY with low cobble content.	X 0 X 0 X	20.0	20.06	2.00 2.00	B C	JOT40 N=35 (2,4/7,8,10			
2.5 -				19.5 —	-	3.00	В	JOT41			
3.5 —				19.0 — - - - 18.5 —		3.00	Č	N=40 (3,6/7,9,12			
4.0				18.0 —	-	4.00 4.00	B C	JOT42 N=33 (4,5/8,			
4.5 -				17.5 — 	-			10740			
5.0 —	5.40 5.50	Obstruction - possible boulder.		17.0 — - - - 16.5 —	16.66 16.56	5.00 5.00 5.50	B C C	JOT43 N=41 (4,7/8,10,11 50 (25 fc	1,12)		
6.0 -	0.00	Borehole terminated due to obstruction. End of Borehole at 5.50m		16.0				5mm/50 for (0mm)		
6.5 -				15.5 —							
7.0				15.0	-						
7.5 —				14.5 — — — — — — —							
8.5 —				13.5							
9.0				13.0	-						
9.5 —				12.5 —							
		Chiselling: Water Strikes: Water Details:	Instal	lation:	E	Backfill:		Remarks:		Legend: B: Bulk	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: 5.40 5.50 01:00 23/05 3.00 Dry 24/05 3.00 1.80 24/05 5.50 Dry	From: To	o: Pipe	9: From: - 0.00 5		Type: Overnight seepage into borehole.				oed urbed onmental SPT ooon SPT

Appendix 2 Trial Pit and Dynamic Probe Logs and Photographs

Contra 55	ct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pi	
Contra	ct:	Millers Glen - Phase 5	Easting:		716487.	900	Date:	14/05/2019	
Locatio	on:	Swords, Co. Dublin	Northing	J:	748655.	913	Excavator	r: 12T Wheele	ed
Client:		Gannon Homes Ltd	Elevatio	n:	17.02		Logged B		
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.30	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Samp	es	Probe	Wate
Scale:	Depth	MADE GROUND: light brown slightly sandy gravelly silty clay with low cobble content and some plastic pipe fragments.		Scale	Depth:	Depth	Type 3 2 3 3 3 3 4 4 4 4		
1.0 — - - - - 1.5 —	0.90	Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone.		16.0 - 15.5	16.12 	1.00	6	6666	
2.0 — - - - - - 2.5 —				15.0 - 14.5	- - - - -	2.00	B 5		
3.0 —	2.70	Stiff brown slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are		14.0 -	14.32	2.80		7 6 6 6 6 9	
- - - 3.5 —	3.10	angular to subrounded of limestone (up to 400mm diameter). Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are		13.5	13.92 - 13.72	3.20	В	9 8 7 13	
- - -		angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.30m			- - -			16 18 17 17	
4.0 — - -				13.0 -	_ _ _			16	5
4.5 — - - -				12.5	_ _ _ _ _				
		Termination: Pit Wall Stability: Groundwate	r Rate [.]	Remar	ks:		Key:		
		Scheduled depth. Pit walls stable. Dry	-	.omai			B = D = CBR :	Bulk disturbed Small disturbed = Undisturbed CBl Environmental	₹

Contraction 55		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting:		716440.	610	Date:	14/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j :	748689.	188	Excavator:	12T Wheele Excavator	d
Client:		Gannon Homes Ltd	Elevatio	n:	16.51		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x (0.70 x 3.00	Scale:	1:25	
Level		Stratum Description	Legend	Leve	l (mOD)	Sample	es	Probe	Water
Scale:	Depth	TOPSOIL.	\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Scale	: Depth:	Depth -	Γype		Strike
0.5 —		Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone.	8 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	16.0 -	- - - - - - - - - -		3 2 3 3 2 3 4 4		
1.0 —				15.5	- - - -	1.00	B 3 3 3 6 6 6 6 8		
2.0 —			# 0 × 0 0	14.5	- - - -		9	11 11 10	
2.5 —				14.0	- - - -	2.50		10 10 10 16 18	
3.0 —	3.00	Pit terminated at 3.00m		13.5	_ _ _ _ _ 13.51			24 30 30 31 31	
3.5 —				13.0 -	- - -				
- - -					- - - -				
4.0 —				12.5					
4.5 —				12.0 -					
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:		Key:		
		Scheduled depth. Pit walls stable. Dry	-				B = B D = S CBR = U	ulk disturbed mall disturbed Jndisturbed CBR vironmental	

Contra	ict No: 599	Trial Pit and Dyna	amic	: Pr	obe	Log			Trial Pit I	
Contra	ıct:	Millers Glen - Phase 5	Easting	:	716438.	670	Date:		14/05/2019	
Locatio	on:	Swords, Co. Dublin	Northin	g:	748638.	308	Exca	/ator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	n:	19.04		Logge	ed By:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD	ions	3.00 x 0	0.70 x 3.00	Scale	:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sampl			Probe	Water Strike
Scale:	Depth 3.00	Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Pit terminated at 3.00m		Scale 19.0 - 18.5 - 18.5 - 17.	: Depth:		Type CBR B	1	ı	
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remarl	KS:		k	ćеу:		
		Scheduled depth. Pit walls stable. Dry		-			B C	s = Bul 0 = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting:		716414.	100	Date:		15/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j :	748697.	864	Excav	ator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevatio	n:	16.89		Logge	d By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.00	Scale:		1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sample	es		Probe	Water
Scale:	Depth	Soft light brown sandy silty CLAY. Sand is fine to	×	Scale		Depth	Туре	2		Strike
1.5 — 1.5 — 2.0 — 3.5 — 4.0 — 4.5 — 4.5 —	0.70	coarse. Firm grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Firm becoming stiff brown slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		16.5 16.0 15.5 14.0		2.50	В	3 4 5 5 5 4 4 6 6 6 8 7 7 6 5 4 4 4 11	16 14 14 19 24 35	
				12.0 -						
/il		Termination: Pit Wall Stability: Groundwate	r Rate: [Remar	ks:			ey:		
()		Scheduled depth. Pit walls stable. Dry						= Sm 3R = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contra	oct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit I	
Contra	nct:	Millers Glen - Phase 5	Easting		716430.	510	Date:	16/05/2019	
Locatio	on:	Swords, Co. Dublin	Northing	g:	748728.	368	Excavator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	n:	16.27		Logged By	: M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.10	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sampl	es	Probe	Water
Scale:	Depth 0.30 1.20 3.10	Firm grey brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Firm grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Very stiff grey slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m	Legend X	Scale 16.0 - 15.5 - 14.5 - 13.0 -	· ,	Depth	Type 2	Probe 11 14 16 16 11 11 13 13 12 15 16 35	Strike
- - 4.5 - - - -				12.0 -	- - - - - - -				
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remark	KS:	1	Key:		1
(}		Scheduled depth. Pit walls stable. Dry					D = S CBR =	Bulk disturbed Small disturbed Undisturbed CBR invironmental	

Contra 55	ict No: 599	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ıct:	Millers Glen - Phase 5	Easting	:	716399.	090	Date:	:	15/05/2019	
Locatio	on:	Swords, Co. Dublin	Northing	g:	748727.	592	Exca	vator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	n:	17.39		Logg	ed By:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD		3.00 x (0.70 x 3.00	Scale	e :	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sample	es		Probe	Water
Scale:	1.90	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse, Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff grey slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		17.0 - 16.5 - 15	15.49	0.50 1.00 2.50	ES B	2 2 2 2 2 2 2 2 2 2 2 3 5 5 5 7 7 8 9 11 11		Strike
		Termination: Dit Wall Stability Consultation	r Pote:	Dom = r	4		1.	(0)//		
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Pit walls stable. Dry	r Kate:	Remarl -	<s: </s: 		E C	D = Sm CBR = Un	k disturbed all disturbed disturbed CBR ronmental	

Contra		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contra	ct:	Millers Glen - Phase 5	Easting:		716410.	670	Date	ə:	15/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j:	748766.	653	Exc	avator:	12T Wheeled Excavator	t
Client:		Gannon Homes Ltd	Elevatio	n:	17.33		Log	ged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.10	Sca	le:	1:25	
Level	(mbgl)	Stratum Description	Legend		l (mOD)	Samp	les		Probe	Water
Scale:	Depth	·	20goria	Scale	: Depth:	Depth	Туре			Strike
1.5 — 1.5 — 2.0 — 3.5 — 4.0 — 4.0 — 4.0 — —	1.60	Firm light brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff grey slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m		17.0 - 16.5 16.0 - 15.5 14.5	16.93 - 16.93 - 15.73 - 14.23	2.00	CBR B	11 11 11 10	13 2 2 14	
4.5 —				12.5	- - - -					
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:			Key:		
		Scheduled depth. Pit walls stable. Dry	-					D = Sm CBR = Un	k disturbed all disturbed adisturbed CBR ronmental	

Strike Strike Depth Firm light brown slightly sandy gravelly sith CLAY with low cobble content. Sand is fine to coarse. Grave is fine to coarse, angular to subtrounded of limestone. Cobbles are angular to subtrounded of limestone. Cobbles are angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone is strike to coarse, angular to subtrounded of limestone is strike to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone is strike to coarse, angular to subtrounded of limestone is strike to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to coarse, angular to subtrounded of limestone. Strike is fine to c	Contraction 55	ct No:	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Client: Gannon Homes Ltd Elevation: 18.00 Logged By: M. Kaliski Engineer: Waterman Moylan Dimensions (LAWD) (m): 3.00 x 0.70 x 3.10 Scale: 12.5 Using the Law (mbg) Scale (Law (mbg)) Scale (Law	Contra	ct:	Millers Glen - Phase 5	Easting:		716388.	910	Date:		15/05/2019	
Engineer: Waterman Moylan Dimensions LWWD, Dimensions CWWD, Dimensions Dimensions CWWD, Dimensions Dimension	Locatio	n:	Swords, Co. Dublin	Northing	g:	748784.	825	Excava	ator:		d
Level (mbgl) Sale Depth Firm light brown slightly sandy gravelly slity CLAY with neutronal of limestone. 5.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutronal of limestone. 5.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutronal of limestone. 5.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutron obbie and the subtrounded of limestone. 5.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutron obbie and the subtrounded of limestone. 5.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutron obbie and the subtrounded of limestone. 5.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutron obbie and the subtrounded of limestone. 5.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutron obbie and the subtrounded of limestone. 6.0.50 Firm becoming stiff grey brown slightly sandy gravelly slity clay with neutron obbies and slit sine to coarse, angular to subtrounded of limestone. 6.0.50 Firm becoming stiff grey brown slightly gravelly fine to coarse SAND. 7.0.0 Firm becoming stiff grey slity slightly gravelly fine to coarse SAND. 6.0.0 Firm becoming stiff grey slity slightly gravelly fine to coarse sand and stiff grey slity slightly gravelly fine to coarse sand and stiff grey slity slightly gravelly fine to coarse sand and stiff grey slity slightly gravelly fine to coarse sand and stiff grey slity slightly gravelly fine to coarse sand gravelly slity slith gravelly fine to coarse sand gravelly slith gravelly fine to	Client:		Gannon Homes Ltd	Elevatio	n:	18.00		Logged	d By:	M. Kaliski	
Level (mbgl) Stratum Description Legend Level (mOD) Samples Probe Strik	Engine	er:	Waterman Moylan	1		3.00 x 0	0.70 x 3.10	Scale:		1:25	
Scale Doph Firm light brown slightly sandy gravelly slify CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. 1.5	Level	(mbgl)	Stratum Description		Leve			es	-	Probe	Water
Scheduled depth. Pit walls stable. 2.00 Seepage - B = Bulk disturbed	1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	2.00 2.10	Firm light brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Carvel is fine to coarse, angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		17.5 17.0 16.5 16.0	- 17.50 - 17.50 - 16.00 - 15.90	1.00	В	2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 6 6 6 6	14 3 3 16 18	
D = Small disturbed			, ,		Remar	ks:		В=	= Bulk		

Contra 55	ct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting		716373.	980	Date:		15/05/2019	
Locatio	on:	Swords, Co. Dublin	Northing	g:	748731.	567	Excav	ator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	n:	17.85		Logge	d By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.00	Scale:		1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sampl			Probe	Water
Scale:	1.60	Firm becoming stiff grey brown slightly sandy gravelly sitty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly sitty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		17.5 - 16.5 - 15.5 - 14.5 - 13.5 - 13.0 -	16.25		Type CBR B		14 16 16 15 3 17 35	•
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remark	(S:		Ke	ey:		
		Scheduled depth. Pit walls stable. 1.30 Seepa					B D CI	= Bulk = Sma	disturbed all disturbed disturbed CBR conmental	

Contra 55	ict No: 599	Trial Pit and Dyna	amic	: Pr	obe	Log			Trial Pit	
Contra	ıct:	Millers Glen - Phase 5	Easting	:	716356.	260	Date:		15/05/2019	
Locatio	on:	Swords, Co. Dublin	Northin	g:	748794.	276	Excav	ator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	n:	18.54		Logge	ed By:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.00	Scale	:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sampl	es		Probe	Water
Scale:	1.90	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		18.0 - 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	16.64		Type CBR B		2 2 14 16 17 18 18 24 27 35	
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remarl	(S:		k	ey:		
		Scheduled depth. Pit walls stable. 2.10 Seepa		-			B D C	= Bul = Sm BR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting		716353.	400	Date	e:	15/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j :	748825.	420	Exc	avator:	12T Wheele	d
Client:		Gannon Homes Ltd	Elevatio	n:	18.39		Log	ged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x (0.70 x 3.00	Sca	le:	1:25	
Level	(mbgl)	Stratum Description		T	el (mOD)	Samp	les		Probe	Water
Level (Scale: Scale:	Depth	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m	Legend Control Contro	18.0 - 17.5 17.0 - 16.5 15.0 - 14.5	16.79	Depth	les Type CBR B	3 3 3 3 3 3 3 4 3 3 4 4 5 5 5 5 5 5 5 5	Probe 14 16 15 18 21 23 35	Strike
4.5 —				14.0 - 13.5	- - - - - - - -					
		Termination: Pit Wall Stability: Groundwate	r Rate: I	Remar	ks:			Key:		
		Scheduled depth. Pit walls stable. Dry	-	,				B = Bul D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contra	ct No: 599	Trial Pit and Dyn	amic	Pr	obe	Log			Trial Pit	
Contract: Location:		Millers Glen - Phase 5	Easting:		716300.	540	Date:		15/05/2019	
		Swords, Co. Dublin Nort		Northing: 7		757	Excavator:		12T Wheeled	d
Client:		Gannon Homes Ltd	Elevatio	n:	18.90		Logged	d By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.00	Scale:		1:25	
	(mbgl)	Stratum Description	Legend		el (mOD)	Sample			Probe	Water Strike
Scale:	0.60 1.70	Firm light brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		18.5 18.0 - 17.5 17.0 - 16.5 15.5	- 18.30 - 18.30 - 17.20 - 17.20	2.00	B B	2 2 2 2 2 3 3 2 4 3 5 5 3 4 4 4 8 8 6 9 9 1	2 17 14 16 15 16 22 35	•
		Termination: Pit Wall Stability: Groundwat	er Rate:	Remar	ke.		IK.	ey:		
		Scheduled depth. Pit walls stable. 1.10 Seep		venial	nə.		B : D : CE	= Bul = Sm BR = Ur	k disturbed nall disturbed ndisturbed CBR ironmental	

	ct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting		716260.	720	Date:	15/05/2019	
Location:		Swords, Co. Dublin Gannon Homes Ltd		j :	748800.659 : 19.30		Excavator	12T Wheeled	d
				n:			Logged By	/: M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x (0.70 x 3.10	Scale:	1:25	
	(mbgl)	Stratum Description	Legend		(mOD)	Sample		Probe	Water
Scale:	0.30 1.80	Firm grey brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m		19.0 - 18.5 - 17.5 - 16.0 -	19.00 19.00 119.00		B B B	111 14 16 15 17 19 19 18 21 23 22 24 28 35	
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Pit walls stable. Dry	r Rate: I	Remark	(S:		D =	Bulk disturbed Small disturbed Undisturbed CBR	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contrac	ct:	Millers Glen - Phase 5	Easting:		716317.	030	Date):	15/05/2019	
Location:		Swords, Co. Dublin		Northing: 748767.6		.699 Exc		avator:	12T Wheeled Excavator	t
Client:		Gannon Homes Ltd	Elevatio	n:	18.75		Logg	ged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.00	Scale	e:	1:25	
Level	(mbgl)	Stratum Description		Leve	l (mOD)	Sampl	es		Probe	Water
Scale:	Depth	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m	Legend	Scale 18.5 18.6 17.0 17.5 16.5 16.0 14.5		Depth	Type CBR ES B		1	Strike
(A		Termination: Pit Wall Stability: Groundwate	r Rate: I	Remar	ks:			Key:		
		Scheduled depth. Pit walls stable. Dry	-					D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contraction 55		Trial Pit and Dyn	amio	: Pr	obe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting	:	716255.	270	Date:		15/05/2019	
Location:		Swords, Co. Dublin		Northing: 748746.026 Ex		Exca	vator:	12T Wheele Excavator	d	
Client:		Gannon Homes Ltd	Elevation	n:	19.00		Logged By:		M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxE		3.00 x 0	0.70 x 3.00	Scale) :	1:25	
Level	(mbgl)	Stratum Description	Legeno	Leve	l (mOD)	Sample	es		Probe	Water
Scale:	Depth	Firm brown slightly sandy gravelly silty CLAY with lov	V &	Scale	Depth:	Depth	Туре	3		Strike
-		cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone.	x 0 X	× × × × × × × × × × × × × × × × × × ×	_			2 3 3		
0.5 —			X X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	18.5	_			2 2 2		
1.0	0.90	Firm becoming stiff grey slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to	X 0 X	18.0	18.10	1.00	В	3 3 3 3		
-		coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone.	8 0 X 8 0 X 8 0 X	× × × × × × × × × × × × × × × × × × ×				3 3 4		
1.5 —				17.5				6 5 4		
2.0 —			X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0	17.0	_	2.00	В	6 6 6		
-				***				7 6 7		
2.5 —			X	16.5				9	2	5
3.0 —	3.00	Pit terminated at 3.00m		× × 16.0	16.00					
- - -					-					
3.5 —				15.5	_					
4.0				15.0						
-				10.0						
4.5 —				14.5	_					
-										
		Termination: Pit Wall Stability: Groundwat	er Rate:	Remar	ks:		 k	(ey:		
		Scheduled depth. Pit walls stable. 2.10 Slow		-			E C	B = Bul D = Sm CBR = Ur	k disturbed nall disturbed ndisturbed CBR ronmental	R

Contra	ct No: 599	Trial Pit and Dyna	amio	Pr	obe	Log			Trial Pit I	
Contract:		Millers Glen - Phase 5	Easting	:	716324.	060	Date:		15/05/2019	
		Swords, Co. Dublin		g:	748719.507		Excavator:		12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation:		18.26		Logged		ed By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.10	Scale:		1:25	
Level	(mbgl)	Stratum Description	Legeno	Leve	I (mOD)	Sampl	es		Probe	Water
Scale:	Depth 0.20	Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse, Gravel is fine to coarse, angular to subrounded of limestone. Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone.	X - X - X - X - X - X - X - X - X - X -	18.0 - 17.5 - 17	18.06		B B	2 2 2 2 4 4 4 3 3 5 5 5 4 4 3 5 5 11 10 9 9 12 12 12	2	Strike
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Pit walls stable. Dry	r Rate:	Remarl	ks:		Ke	ey: = Bulk	< disturbed	
(3		Diy					D CI	= Sma BR = Un	all disturbed disturbed CBR conmental	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pi	
Contract: Location: Client:		Millers Glen - Phase 5	Easting:		716290.	650	Date:	15/05/2019	
		Swords, Co. Dublin		Northing: 748715.769 Exc		Excavato	or: 12T Wheele Excavator	ed	
		Gannon Homes Ltd	Elevatio	n:	19.49		Logged E	By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimension (LxWxD)		3.00 x 0	0.70 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sample	es	Probe	Water
Scale:	0.30 2.40	Firm light brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff grey slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m	Legend	19.0 - 18.5 18.0 - 17.5 17.0 - 15.5	19.19		Type	5 5 8 8 7 8 8 11 14 16 14 16 16	Strike
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Instability between 0.40 Seepa 0.40m and 2.20m.		Remar	ks:			Bulk disturbed Small disturbed = Undisturbed CBI Environmental	R

Contraction 55		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting:		716342.4	450	Date	e:	15/05/2019	
Location:		Swords, Co. Dublin		Northing: 748696.355 Ex		Exca	avator:	12T Wheeled Excavator		
Client:		Gannon Homes Ltd	Elevatio	n:	18.84		Log	ged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.00	Scal	le:	1:25	
Level	(mbgl)	Stratum Description	Legend		l (mOD)	Sampl	es		Probe	Water
Scale:	Depth	·	20g0110	Scale	: Depth:	Depth	Туре	3		Strike
1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 — 4.5 —	0.40	Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Firm grey brown slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Stiff light grey slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		18.5 18.0 17.5 16.5 16.0	_ 15.84 	2.50	CBR B	3 3 3 3 3 3 2 2 2 2 2 3 3 3 3 3 4 4 4 4	2 1 14 14 14	
- - -				14.0 -	- - -					
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:			Key:		
		Scheduled depth. Pit walls stable. Dry	-					B = Bul D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contraction 55		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pi	
Contra	ct:	Millers Glen - Phase 5	Easting:		716367.	790	Date:	15/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j:	748666.	198	Excavato	or: 12T Wheel Excavator	ed
Client:		Gannon Homes Ltd	Elevatio	n:	19.73		Logged I	By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.10	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		l (mOD)	Sample	es	Probe	Water
Scale:	1.50	Firm brown slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Stiff grey slightly sandy gravelly silty CLAY with high cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m		19.5 19.0 - 18.5 17.0 - 16.5	18.23	2.00	B B	4 4 4 6 6 7 8 8 8 8 7 11 6 14 12 12 12 11 14 12 12 12 13 16	Strike
		Termination: Pit Wall Stability: Groundwate	r Rate [.]	Remar	ks:		Key:	<u> </u>	
		Scheduled depth. Pit walls stable. Dry		Tomal			B = D = CBR	Bulk disturbed Small disturbed R = Undisturbed CB Environmental	R

Contract 55		Trial Pit and D	Dynam	nic	Pr	obe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Eas	ting:		716337.2	270	Date:		14/05/2019	
Locatio	n:	Swords, Co. Dublin	Nor	thing:		748662.2	233	Exca	ator:	12T Wheeled	b
Client:		Gannon Homes Ltd	Elev	/ation:		20.42		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		ension		3.00 x 0).70 x 2.40	Scale		1:25	
Level	(mbgl)	Stratum Description				I (mOD)	Sample	es		Probe	Water
Scale:	1.50	Firm becoming stiff brown slightly sandy grave CLAY with low cobble content. Sand is fine to coravel is fine to coarse, angular to subrounded limestone. Cobbles are angular to subrounded limestone. Very stiff black slightly sandy gravelly silty CLA medium cobble and low boulder content. Sand to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulder angular to subrounded of limestone (up to 400 diameter). Pit terminated due to boulder obstructions. Pit terminated at 2.40m	AY with d is fine ers are		20.0 - 19.5 - 19.0 - 17.5 - 16.5 -	: Depth:	2.00	В	2 2 2 3 3 3 6 8 8 7 9 11	1 14 16 16 18 19 18 35	Strike
		Termination: Pit Wall Stability: Grou	ındwater Rat	e: Re	emark	ks:		K	ey:		
		Obstruction - Pit walls stable. boulders.	Dry	-				B D	= Bul = Sm :BR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contra 55	ct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting:		716377.	280	Date:		14/05/2019	
Locatio	on:	Swords, Co. Dublin	Northing	:	748605.	280	Exca	/ator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	า:	21.71		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimension (LxWxD)		3.00 x ().70 x 3.00	Scale	:	1:25	
Level	(mbgl)	Stratum Description	Legend		l el (mOD)	Sampl	es		Probe	Wate
Scale:	Depth	TOPSOIL.	Logona	Scale	Depth:	Depth	Туре	3	11000	Strike
1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 — 4.5 —	2.30	Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		21.5 21.0 - 20.5 20.0 - 19.5 18.5		2.00	ВВВВ	3 4 4 4 4 4 5 5 5 5 6 6 7 7 6 6 6 8 8 7 7 7 9 9 9 8 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9	2 35	•
					-					
		Termination: Pit Wall Stability: Groundwate		Remar	ks:	l	K	Сеу:		
		Scheduled depth. Pit walls stable. 2.20 Seepa	ige -				C) = Sm :BR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contraction 55		Trial Pit and Dyn	amic	: Pr	obe	Log			Pit No:
Contra	ct:	Millers Glen - Phase 5	Easting	:	716302.	370	Date:	15/05/201	9
Locatio	n:	Swords, Co. Dublin	Northin	g:	748636.	517	Excavato	12T Whee Excavator	
Client:		Gannon Homes Ltd	Elevation	on:	22.02		Logged E	By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxE		3.00 x 0	0.70 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legeno	Leve	el (mOD)	Sample	es	Probe	Water Strike
Scale:	1.50	Firm grey brown slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Stiff grey slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Stiff light grey slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		21.5 21.5 21.6 21.6 21.6 20.5	20.52 20.12 19.02	1.00 2.50	B	5 5 5 6 6 6 7 7 7	35
		Termination: Pit Wall Stability: Groundwat	er Rate:	Remar	·ke·		Kov.		
		Scheduled depth. Pit walls stable. 0.80 Seep		-	NS.			Bulk disturbed Small disturbed = Undisturbed C Environmental	

Contra	oct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contra	ıct:	Millers Glen - Phase 5	Easting:		716266.	450	Date:		15/05/2019	
Location	on:	Swords, Co. Dublin	Northing	j:	748652.	449	Excavat	tor:	12T Wheeled Excavator	d
Client:		Gannon Homes Ltd	Elevatio	n:	22.11		Logged	Ву:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimensi (LxWxD		3.00 x (0.70 x 3.00	Scale:		1:25	
Level	(mbgl)	Stratum Description	Legend		I (mOD)	Sample		F	Probe	Water Strike
Scale:	Depth 0.20 - 3.00	Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Firm brown slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Stiff grey slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		21.0 - 21.5 21.0 - 20.5 20.0 - 19.5 19.0 -	: Depth: - 21.91 - 21.91 - 20.01 - 19.11 19.11 1 19.11 - 1 19.11	1.00 2.50	B B	2 2 4 3 4 5 5 6 6 5 4 4 4 3 3 5 5 6 6 7 7 7 11 1.	4 4 16 35	
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remar	ke.		Key			
		Scheduled depth. Pit walls stable. Dry	rale: 1	vemat	NS.		B = D = CBF	Bulk Sma	disturbed Ill disturbed listurbed CBR onmental	

Contract 55	ct No:	Trial Pit and Dyn	amic	: Pr	obe	Log			Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting	:	716231.	410	Date	э:	15/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	g:	748696.	705	Exc	avator:	12T Wheele Excavator	d
Client:		Gannon Homes Ltd	Elevation	n:	21.08		Log	ged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.10	Sca	le:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	el (mOD)	Sampl	les		Probe	Water
Scale:	Depth	Firm brown slightly sandy gravelly silty CLAY. Sand is		Scale		Depth	Туре	12		Strike
1.5 — 2.0 — 3.5 — 3.0 — 4.0 — 4.0 —	0.40 1.40 2.40	Firm blown slightly sandy gravelly silty CLAY with high cobble content. Sand is fine to coarse. Gravel is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Stiff grey slightly sandy gravelly silty CLAY with low cobble and boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m		21.0 - 21		2.00 2.50	CBR B		12 2 3	5
4.5 —				17.0	- - - - - - -					
		Termination: Pit Wall Stability: Groundwate	er Rate	Remar	ks.			Key:		
		Scheduled depth. Pit walls stable. 1.50 Seepa		-				B = Bu D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBF ironmental	₹

Contra	ct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting	:	716219.	840	Date:	15/05/2019	
Locatio	on:	Swords, Co. Dublin	Northin	g:	748622.	510	Excavator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	n:	24.15		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxE		3.00 x 0	0.70 x 3.10	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legeno	Leve	I (mOD)	Sample	es	Probe	Water Strike
Scale:	2.50	Firm brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m	X -	24.0 - 23.5 23.0 - 20.0	23.05	2.00	В 🛌	11 11 12 13 12 12 12 12 13 17 35	
		Termination: Dit Wall Stability: Croundwate	r Rate:	Remarl	ke.		Kov		
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Pit walls stable. Dry	ı Kate:	kemari -	KS:		D = Si CBR = U	ulk disturbed mall disturbed Indisturbed CBR vironmental	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pi	
Contrac	ct:	Millers Glen - Phase 5	Easting:		716241.	970	Date:	15/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j :	748643.	520	Excavato	or: 12T Wheele Excavator	ed
Client:		Gannon Homes Ltd	Elevatio	n:	22.73		Logged E	By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x (0.70 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	T	l (mOD)	Sample	es	Probe	Water Strike
Scale:	1.50	Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		22.0 - 21.5 21.0 - 19.5 19.0 - 18.5	21.23	2.00	B B B	5 5 5 7 11 12 8 9 12 12 11 10 10 12 12 12	55
		Termination: Pit Wall Stability: Groundwate	r Rate: F	l Remar	ks:		Key:	:	
		Scheduled depth. Pit walls stable. Dry	-	,			B = D = CBR	Bulk disturbed Small disturbed = Undisturbed CBI Environmental	R

Contraction 55		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting:		716269.	330	Date:	14/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j:	748608.	685	Excavator	12T Wheele	ed
Client:		Gannon Homes Ltd	Elevatio	n:	23.47		Logged B	y: M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x (0.70 x 3.10	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		el (mOD)	Sample	es	Probe	Water Strike
Scale:	2.50 3.10	Wery stiff black slightly sandy gravelly silty clay with low cobble and boulder content and some gravel laminas. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m		23.0 - 22.5 22.0 - 21.5 21.0 -	20.97	2.80	B B B B B B B B B B B B B	7 6 8 8 8 7	
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:		Key:		
		Scheduled depth. Instability between 0.20m and 1.50m.					B = D = CBR =	Bulk disturbed Small disturbed = Undisturbed CBI Environmental	₹

Contra	ct No: 599	Trial Pit and Dyna	amic	: Pr	obe	Log		Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting	:	716242.	180	Date:	14/05/2019	
Locatio	on:	Swords, Co. Dublin	Northing	g:	748582.	076	Excavator:	12T Wheele	d
Client:		Gannon Homes Ltd	Elevation	n:	25.18		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sampl	es	Probe	Water
Scale:	2.00 2.30	MADE GROUND: black slightly sandy gravelly silty clay with low cobble content and some gravel laminas. MADE GROUND: black slightly sandy gravelly silty clay with low cobble and boulder content and some gravel laminas. Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Pit terminated at 3.00m		24.0 - 24.0 - 24.0 - 21.5 - 21.0 -	- 23.18 - 22.88		Type 3 3 3 2 3 3 3 2 3 3	11 13 16 16 14 15 17 17 17 17	
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remarl	ks:		Key:		
		Scheduled depth. Pit walls stable. Dry		-			B = B D = S CBR = U	ulk disturbed mall disturbed Jndisturbed CBF vironmental	R

Contra	ict No: 599	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contra	ıct:	Millers Glen - Phase 5	Easting	:	716305.	130	Date:		15/05/2019	
Locatio	on:	Swords, Co. Dublin	Northin	g:	748611.3	372	Excava	tor:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevation	n:	23.58		Logged	Ву:	M. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD		3.00 x (0.70 x 3.40	Scale:		1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sample	es	-	Probe	Wate
Scale:	1.90	Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m		23.5 23.5 23.0 -	21.68		Type I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 3 4 5 6 6 5 5 6 6 7 7 7 8 8 8 8 6 6 7 9 9 11	16 18 17 35	Strike
		Termination: Pit Wall Stability: Groundwate	r Rate:	Remar	ke.		Key	۸,.		
		Scheduled depth. Pit walls stable. Dry	i rale:	remar -	NS.		B = D = CBI	Bulk Sma	disturbed all disturbed disturbed CBR conmental	

Contraction 55	ct No: 99	Trial Pit and	Dynan	nic	Pr	obe	Log			Trial Pit TP3	
Contra	ct:	Millers Glen - Phase 5	Eas	sting:		716294.2	200	Date:		14/05/2019	
Locatio	n:	Swords, Co. Dublin	Noi	rthing:		748561.3	395	Exca	/ator:	12T Wheele Excavator	d
Client:		Gannon Homes Ltd	Ele	vation	:	25.04		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		nensio WxD)		3.00 x 0).70 x 2.50	Scale	:	1:25	
Level	(mbgl)	Stratum Description	j	i i		(mOD)	Sample	es		Probe	Water
Scale:	Depth 0.30 2.20 2.50	Firm grey brown slightly sandy gravelly silty with low cobble content. Sand is fine to coa Gravel is fine to coarse, angular to subround limestone. Cobbles are angular to subround limestone. Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine Gravel is fine to coarse, angular to subround limestone. Cobbles are angular to subround limestone. Very stiff black slightly sandy gravelly silty Cmedium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular subrounded of limestone. Cobbles and bout angular to subrounded of limestone (up to diameter). Pit terminated due to boulder obstructions. Pit terminated at 2.50m	CLAY with and is fine to ilders are	gena L	24.5 - 24.0 - 23.5 - 21.5 - 21.0 - 20.5 - 20			В	3 3 3 3 3 3 4 4 4 4 3 5 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7		Strike
-		Termination: Pit Wall Stability: G	Groundwater Ra	ite: R	emark	(S:		K	Сеу:		
			.20 Seepage	-				B	s = Bu 0 = Sm 3BR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contra	ict No: 599	1	rial Pit an	d Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ıct:	Millers Glen - Phas	e 5		Easting:		716211.	620	Date:		14/05/2019	
Location	on:	Swords, Co. Dublin	1		Northing):	748584.	607	Excav	ator:	12T Wheeled Excavator	d
Client:		Gannon Homes Ltd	d		Elevatio	n:	25.91		Logge	d By:	M. Kaliski	
Engine	eer:	Waterman Moylan			Dimensi (LxWxD		3.00 x (0.70 x 2.10	Scale:		1:25	
Level	(mbgl)	St	ratum Description		Legend	Leve	l (mOD)	Sample			Probe	Water Strike
2.5	1.90 2.10	CLAY with low cobbined and compared in the stone. Cobbles limestone. Cobbles limestone. Very stiff black slight medium cobble and to coarse. Gravel is subrounded of lime angular to subround diameter). Pit terminated due to cobble and to coarse.	brown slightly sandy ple content. Sand is fi arse, angular to subro are angular to subro are angular to subro are angular to subro to boulder content. So fine to coarse, angulations and bed of limestone (up to boulder obstruction it terminated at 2.10m	y CLAY with Sand is fine ar to oulders are to 400mm		25.5 25.0 - 24.0 - 23.5 22.0 - 21.5	24.01	1.00 2.00	B B	3 2 3 3 4 4 4 4 4 4 4 6 7 7 6 6 6 7 7 7 7 7 7 7	2 2 16 35	
		Termination:	Pit Wall Stability:	Groundwate	r Rate: F	Remar	ks:		Ke	ey:		
		Obstruction - boulders.	Pit walls stable.	Dry	-				B D Cl	= Bul = Sm BR = Un	k disturbed all disturbed adisturbed CBR ronmental	

Contract 55		Trial Pit and Dy	namic	Pr	obe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting		716233.	520	Date	:	14/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	g:	748550.	545	Exca	ıvator:	12T Wheele Excavator	ed
Client:		Gannon Homes Ltd	Elevatio	n:	26.34		Logg	jed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 3.10	Scale	e:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	el (mOD)	Sample			Probe	Water
Scale:		MADE GROUND: light brown slightly sandy gravel		Scale	e: Depth:	Depth -	Туре	3		Strike
1.0 — 1.5 — 2.0 — 2.5 — 2.5 —	1.60 1.80	silty clay with low cobble content and some plastic pipe fragments. MADE GROUND: brown slightly sandy gravelly silt clay with low cobble content and some gravel laminas. MADE GROUND: black slightly sandy gravelly silt clay with low cobble and boulder content and some gravel laminas. Firm becoming stiff brown slightly sandy gravelly s CLAY with low cobble content. Sand is fine to coar Gravel is fine to coarse, angular to subrounded of limestone.	y e Silty Sise.	25.5 25.0 24.5	26.04 - 26.04 - 24.74 - 24.54	2.00	В	3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 5 5 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		•
3.0 —		Very stiff black slightly sandy gravelly silty CLAY w medium cobble and low boulder content. Sand is f to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders a angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.10m	ine \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	23.5	23.64	3.00	В	7 7 7 7 7 6 5 5		
3.5 —					- - -			6 7 9 8		
4.0 —				22.5	- - - -			7	1 14 14 15	
4.5 — —				22.0					35	5
				21.5	_					
		Termination: Pit Wall Stability: Groundw	vater Rate: I	Remar	·ke·		ļ,	Key:		
		Scheduled depth. Pit walls stable. 1.90 Se		·			I (B = Bu D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBF ironmental	₹

Contra 55	ct No: 599	Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit TP3 :	
Contra	ct:	Millers Glen - Phase 5	Easting		716269.	980	Date:	14/05/2019	
Locatio	on:	Swords, Co. Dublin	Northing	g:	748552.	133	Excavator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevatio	n:	25.43		Logged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x 0	0.70 x 2.20	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sampl		Probe	Water Strike
Scale:	1.70 2.20	Firm becoming stiff brown slightly sandy gravelly silty CLAY with low cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated due to boulder obstructions. Pit terminated at 2.20m		25.0 - 24.5 - 24.5 - 21.5 - 21.0 - 20.5 - 20	23.73		Type 2 2 2 3 4 4 4 4 4 4 4 4 4	12 35	Strike
		Termination: Pit Wall Stability: Groundwate	r Rate: I	l Remarl	ks:		Key:		
		Obstruction - boulders. Pit walls stable. Dry	-				D = Si CBR = U	ulk disturbed mall disturbed Indisturbed CBR vironmental	

Contract 55		Trial Pit and I	Dynam	ic Pı	robe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easti	ng:	716192.	930	Date:		16/05/2019	
Locatio	n:	Swords, Co. Dublin	North	ning:	748510.	478	Excav	/ator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Eleva	ation:	29.42		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		nsions (xD) (m):	3.00 x (0.70 x 1.60	Scale	:	1:25	
Level	(mbgl)	Stratum Description	Lege	Love	el (mOD)	Sampl	es		Probe	Water
Scale:	1.60	MADE GROUND: dark grey silty sandy grave high cobble content and some concrete, timber plastic bags, steel and mortar. Pit terminated due to obstructions. Pit terminated at 1.60m	l with	29.0 28.5 28.0 27.5 27.0 26.5 25.0		0.50	Type ES B	3 3 4 4 6 7 6 5 7 7 7 9 9 9 9	16 17 21 24 27 23 35	Strike
		Termination: Pit Wall Stability: Gro	undwater Rate	: Rema	rks:		 K	Čey:		
		Obstruction - boulders. Pit walls stable.	Dry	-			B D C	= Bul = Sm :BR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contraction 55		Trial Pit and	Dynar	mic	Pr	obe	Log			Trial Pit	
Contra	ct:	Millers Glen - Phase 5	E	asting:		716220.9	970	Date:		16/05/2019	
Locatio	n:	Swords, Co. Dublin	N	orthing	j:	748495.3	365	Exca	vator:	12T Wheele Excavator	d
Client:		Gannon Homes Ltd	EI	levatio	n:	28.88		Logg	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan		imensi xWxD		3.00 x 0).70 x 1.40	Scale):	1:25	
Level		Stratum Description		egend	Leve	I (mOD)	Sampl	es		Probe	Water
Scale:	0.70	MADE GROUND: brown slightly sandy gravelay with low cobble content and some gravelaminas. MADE GROUND: black sandy gravelly silty some plastic, red brick, tin cans and concresive terminated due to obstructions. Pit terminated at 1.40m	velly silty vel	egena	28.5 - 28.0 - 27.0 - 26.5 - 25	28.18	Depth 1.00	В	4 5 5 5 6 4 4 4 5 6 6 6 6 6	Зэ	Strike
4.0 —					24.5	-					
						_					
		Termination: Pit Wall Stability: G Obstruction - boulders. Pit walls stable.	roundwater R Dry	F		ninated d	ue to ttempt mad	de - C) = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contrac 55		Т	rial Pit an	d Dyna	amic	Pr	obe	Log			Trial Pi	
Contra	ct:	Millers Glen - Phase	5		Easting:		716226.2	270	Date:		16/05/2019	
Locatio	n:	Swords, Co. Dublin			Northing	:	748493.2	202	Exca	/ator:		
Client:		Gannon Homes Ltd			Elevation	1:	28.90		Logge	ed By:		
Engine	er:	Waterman Moylan			Dimension (LxWxD)		х	х	Scale	:	1:25	
Level	(mbgl) Depth	Stra	atum Description		Legend		I (mOD)	Samp		ı	Probe	Water Strike
0.5 —	0.00	MADE GROUND: br clay with low cobble laminas.	content and some gi	ravel		28.5	28.10	Depth	Type			
- 1.0 - -		MADE GROUND: da cobbles with high bo fragments.	ark grey silty sandy g ulder content and so	ravelly me concrete		28.0 -						
1.5 — - -	1.40	Pit terminated due to Pit	o obstructions. terminated at 1.40m		***********	27.5	27.50 					
2.0 —						27.0 -	_					
2.5 — - -						26.5						
3.0 —						26.0 -						
3.5 —						25.5	-					
4.0 — - -						25.0 -						
4.5 —						24.5	-					
		To made - No.	Dit Mall Otal III	Craver de 1	D-4:	lam: '	1		l.	'ave		
		Termination: Obstruction - boulders.	Pit Wall Stability:	Groundwater Dry	rate:	demarl	\S.		B C) = Sma BR = Una	k disturbed all disturbed disturbed CB ronmental	R

Contract 55		Trial Pit and Dyna	amic	: Pr	obe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting	:	716167.	410	Date:		16/05/2019	
Locatio	n:	Swords, Co. Dublin	Northin	g:	748460.	628	Excav	ator:	12T Wheeled Excavator	d
Client:		Gannon Homes Ltd	Elevation	n:	29.38		Logge	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x (0.70 x 3.00	Scale:		1:25	
Level		Stratum Description	Legend	Leve	l (mOD)	Sample	es		Probe	Water
Scale:	Depth	MADE GROUND: grey silty sandy gravel (Cl. 804).		Scale	: Depth:	Depth	Гуре	3		Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	0.20 0.40 2.10	Firm light brown slightly sandy gravelly silty CLAY. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles are angular to subrounded of limestone. Very stiff grey slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		29.0 - 28.5 28.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27	29.18 28.98 28.98 27.28 27.28	2.50	В	5 5 5 7 6 4 4 4 3 3 3 4 4 4 4 4 4 5 11 12	2 16 35	
4.5 —				25.0 -	-					
		Termination: Pit Wall Stability: Groundwate	Rate:	 Remar	ks:		K	ey:		
		Scheduled depth. Pit walls stable. Dry		-			B D C	= Bull = Sm BR = Un	k disturbed all disturbed disturbed CBR ronmental	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting:		716212.	620	Date	:	16/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j:	748434.	663	Exca	vator:	12T Wheeled	b
Client:		Gannon Homes Ltd	Elevatio	n:	29.12		Logg	ed By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x (0.70 x 3.00	Scale	ə:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Sample	es		Probe	Water
Scale:	Depth	MADE GROUND: grey silty sandy gravel (Cl. 804).		Scale	e: Depth:	Depth -	Туре			Strike
1.0 — 1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 —	2.10	Firm becoming stiff brown slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m	1949-1949-1949-1949-1949-1949-1949-1949	29.0 - 28.5 28.0 - 27.5 26.5 26.0 -	27.02	2.50	В	4 4 3 4 5 7 6 7 6 5 7	2 16 19 20 24 26 35	
(A)		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:			Key:		
		Scheduled depth. Pit walls stable. Dry	-]	D = Sm CBR = Ur	lk disturbed nall disturbed ndisturbed CBR ironmental	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting:		716206.	730	Date	e:	16/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j :	748385.	328	Exc	avator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevatio	n:	30.43		Log	ged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.00	Sca	le:	1:25	
Level	(mbgl)	Stratum Description	Legend	T	el (mOD)	Samp	es		Probe	Water
Scale:	Depth	MADE GROUND: brown black slightly sandy gravelly		Scale	Depth:	Depth	Туре	2		Strike
1.0 — 1.5 — 1.5 — 2.0 — 2.5 — 3.0 — 4.0 —	0.90	MADE GROUND: brown black slightly sandy gravelly silty clay with low cobble content. Firm becoming stiff brown slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m	1-4m-1-m-1-m-1-m-1-m-1-m-1-m-1-m-1-m-1-m	29.5 29.0 28.5 27.5 27.0	29.53	0.50 1.00	CBR B	2 2 4 4 7 7 7 8 6	1 14 16 19 22 35	
4.5 —				25.5	-					
		Termination: Pit Wall Stability: Groundwate	r Rate: F	Remar	ks:			Key:		
		Scheduled depth. Pit walls stable. Dry	-	,				B = Bu D = Sr CBR = U	lk disturbed nall disturbed ndisturbed CBR rironmental	

Contra	ict No: 599	Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit I	
Contra	ıct:	Millers Glen - Phase 5	Easting		716179.	600	Date:	,	16/05/2019	
Location	on:	Swords, Co. Dublin	Northing	g:	748389.	142	Excavate		12T Wheeled Excavator	d
Client:		Gannon Homes Ltd	Elevation	n:	30.92		Logged	By:	И. Kaliski	
Engine	eer:	Waterman Moylan	Dimens (LxWxD		3.00 x (0.70 x 3.00	Scale:	,	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	I (mOD)	Sampl	es	P	robe	Water
Scale:	Depth	·	Logona	Scale	: Depth:	Depth	Туре			Strike
1.5 — 2.0 — 2.5 — 3.0 — 4.0 — 4.5 — 4.5 —	1.90	TOPSOIL. Firm becoming stiff brown slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		29.0 - 227.0 - 26.5 -	30.82	0.50	B B	4 4 4 6 9 9 7 8 12	6 18 22 26 35	
	7	Termination: Pit Wall Stability: Groundwate	r Rate: I	Remarl	KS:		Key			
(Scheduled depth. Pit walls stable. Dry	-					Smal R = Undi	disturbed I disturbed sturbed CBR nmental	

Contract 55		Trial Pit and Dyna	amic	Pr	obe	Log		Trial Pit	
Contrac	ct:	Millers Glen - Phase 5	Easting:		716190.	650	Date:	16/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	j:	748345.	002	Excavato	r: 12T Wheele Excavator	ed
Client:		Gannon Homes Ltd	Elevatio	n:	32.20		Logged E	By: M. Kaliski	
Engine	er:	Waterman Moylan	Dimensi (LxWxD		3.00 x 0	0.70 x 3.00	Scale:	1:25	
Level	(mbgl)	Stratum Description	Legend		l (mOD)	Sample	es	Probe	Water
Scale:	Depth			Scale	: Depth:	Depth	Туре		Strike
1.0 — 1.5 — 2.0 — 3.5 — 4.0 —	1.90	TOPSOIL. Firm becoming stiff brown slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter). Pit terminated at 3.00m		32.0 - 31.5 31.0 - 30.5 29.5	32.00 - 32.00 - 32.00 - 30.30 - 30.30 - 29.20	2.50	В		5
4.5 —				28.0	- - - - - -				
		Termination: Pit Wall Stability: Groundwate	r Rate [.] F	Remar	ks:		Key:		
		Scheduled depth. Pit walls stable. Dry	-				B = D = CBR	Bulk disturbed Small disturbed = Undisturbed CBF Environmental	2

Contraction 55		Trial Pit and Dyna	amic	Pr	obe	Log			Trial Pit	
Contra	ct:	Millers Glen - Phase 5	Easting		716145.	700	Date	e:	16/05/2019	
Locatio	n:	Swords, Co. Dublin	Northing	g:	748341.	706	Exc	avator:	12T Wheeled	d
Client:		Gannon Homes Ltd	Elevatio	n:	32.17		Log	ged By:	M. Kaliski	
Engine	er:	Waterman Moylan	Dimens (LxWxD		3.00 x (0.70 x 3.00	Sca	le:	1:25	
Level	(mbgl)	Stratum Description	Legend	Leve	l (mOD)	Samp	les		Probe	Water
Scale:	Depth	MADE GROUND: grey silty sandy gravel (Cl. 804).		Scale	: Depth:	Depth	Туре	2		Strike
- - -	0.40	Firm becoming stiff brown slightly sandy gravelly silty	20-20-X	32.0 -	31.77			3 3 4		
0.5 —		CLAY with medium cobble and low boulder content. Sand is fine to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		31.5	- - -	0.50	CBR	5 5		
1.0 —				31.0 -	- - - -	1.00	В	6 1 1		
1.5 —	1.80	Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low boulder content. Sand is fine		30.5	30.37				35	
2.0 —		to coarse. Gravel is fine to coarse, angular to subrounded of limestone. Cobbles and boulders are angular to subrounded of limestone (up to 400mm diameter).		30.0 -	- - - -	2.00	В			
2.5 —				29.5	- - -					
3.0 —	3.00	Pit terminated at 3.00m		29.0 -	29.17					
3.5 —				28.5	- - - -					
4.0 —				28.0 -	- - -					
4.5 —				27.5	- - - -					
					1					
		Termination: Pit Wall Stability: Groundwate Scheduled depth. Pit walls stable. Dry	r Rate: I	Remar	ks:			D = Sn CBR = Ui	lk disturbed nall disturbed ndisturbed CBR ironmental	

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

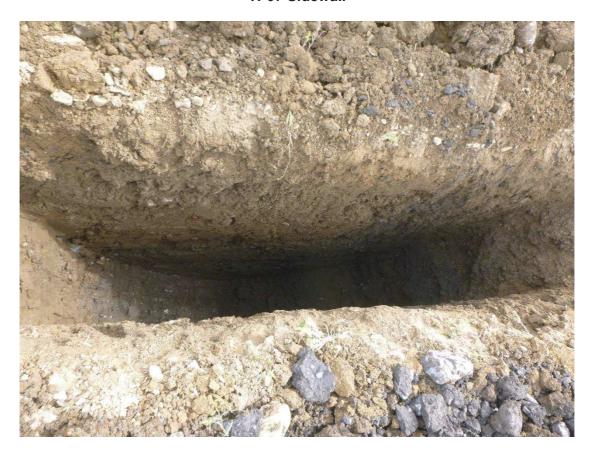
TP03 Spoil

TP04 Sidewall

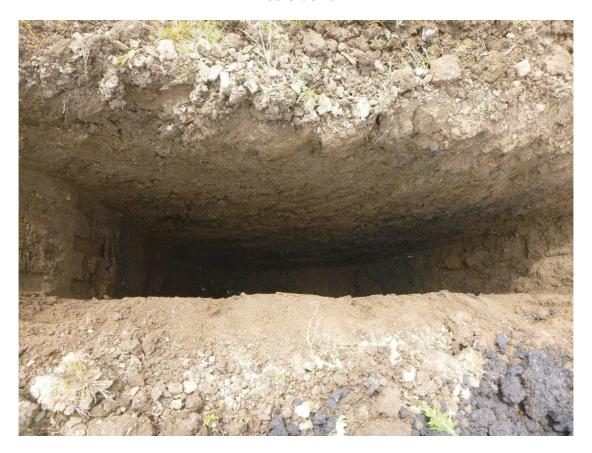
TP04 Spoil

TP05 Sidewall

TP05 Spoil


TP06 Sidewall

TP06 Spoil


TP07 Sidewall

TP07 Spoil

TP08 Sidewall

TP08 Spoil

TP09 Sidewall

TP09 Spoil

TP10 Sidewall

TP10 Spoil

TP11 Sidewall

TP11 Spoil

TP12 Sidewall

TP12 Spoil

TP13 Sidewall

TP13 Spoil

TP14 Sidewall

TP14 Spoil

TP15 Sidewall

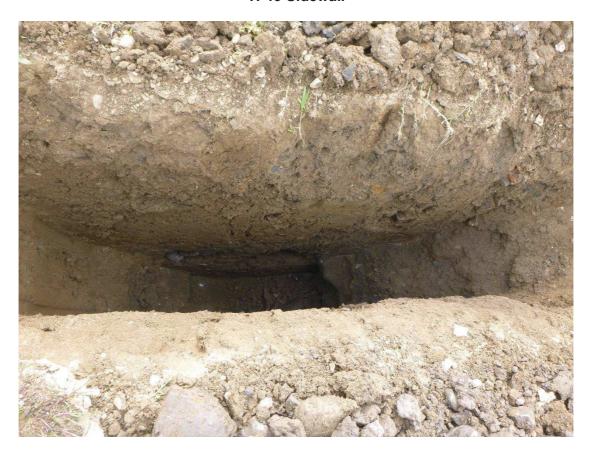
TP15 Spoil

TP16 Sidewall

TP16 Spoil

TP17 Sidewall

TP17 Spoil


TP18 Sidewall

TP18 Spoil

TP19 Sidewall

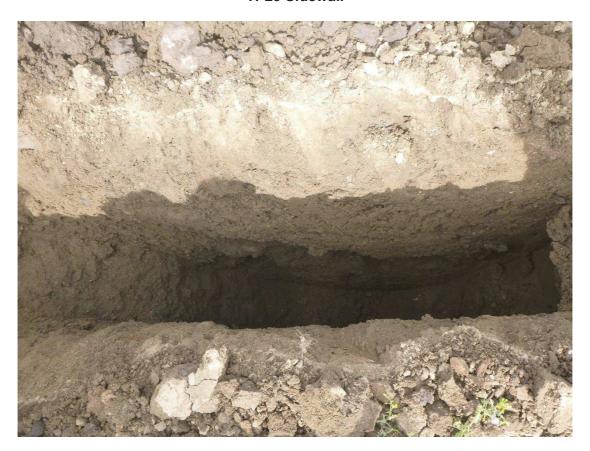
TP19 Spoil

TP20 Sidewall

TP20 Spoil


TP21 Sidewall

TP21 Spoil


TP22 Sidewall

TP22 Spoil

TP23 Sidewall

TP23 Spoil

TP24 Sidewall

TP24 Spoil

TP25 Sidewall

TP25 Spoil

TP26 Sidewall

TP26 Spoil

TP27 Sidewall

TP27 Spoil

TP29 Sidewall

TP29 Spoil

TP30 Sidewall

TP30 Spoil

TP31 Sidewall

TP31 Spoil

TP32 Sidewall

TP32 Spoil

TP33 Sidewall

TP33 Spoil

TP34 Sidewall

TP34 Spoil

TP35 Sidewall

TP35 Spoil

TP35A Sidewall

TP35A Spoil

TP36 Sidewall

TP36 Spoil

TP37 Sidewall

TP37 Spoil

TP38 Sidewall

TP38 Spoil

TP39 Sidewall

TP39 Spoil

TP40 Sidewall

TP40 Spoil

TP41 Sidewall

TP41 Spoil

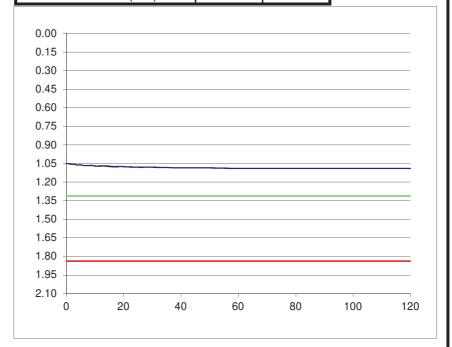
Appendix 3 Soakaway Test Results

Project Reference:	5599
Contract name:	Millers Glen - Phase 5
Location:	Swords, Co. Dublin
	0.4.0.4

Test No: SA01 **Date:** 16/05/2019

Ground Conditions		
From	То	
0.00	0.20	MADE GROUND: grey silty sandy gravel (Cl. 804).
0.20	0.40	Firm light brown slightly sandy gravelly silty CLAY.
0.40	2.10	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content.

0.40	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.05
0.5	1.05
1	1.05
1.5	1.06
2	1.06
2.5	1.06
3	1.06
3.5	1.06
4	1.06
4.5	1.06
5	1.06
6	1.07
7	1.07
8	1.07
9	1.07
10	1.07
12	1.07
14	1.07
16	1.08
18	1.08
20	1.08
25	1.08
30	1.08
40	1.09
50	1.09
60	1.09
75	1.09


90

120

1.09

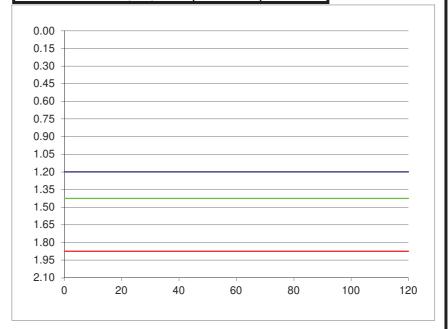
1.09

um cobble content.		
Pit Dimensions (m)		
Length (m)	2.60	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.05	m
Depth of Water	1.05	m
75% Full	1.31	m
25% Full	1.84	m
75%-25%	0.53	m
Volume of water (75%-25%)	0.96	m3
Area of Drainage	13.86	m2
Area of Drainage (75%-25%)	5.285	m2
Time		·
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

Project Reference:	5599
Contract name:	Millers Glen - Phase 5
Location:	Swords, Co. Dublin

Test No: SA02 **Date:** 14/05/2019


Ground Cond	itions	
From	То	
0.00	0.30	MADE GROUND: light brown slightly sandy gravelly silty clay with low cobble
		content and some plastic pipe fragments.
0.30	1.40	MADE GROUND: brown slightly sandy gravelly silty clay with low cobble
		content and some gravel laminas.
1.40	2.10	Firm brown slightly sandy gravelly silty CLAY with low cobble content.

1.40	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.20
0.5	1.20
1	1.20
1.5	1.20
2	1.20
2.5	1.20
3	1.20
3.5	1.20
4	1.20
4.5	1.20
5	1.20
6	1.20
7	1.20
8	1.20
9	1.20
10	1.20
12	1.20
14	1.20
16	1.20
18	1.20
20	1.20
25	1.20
30	1.20
40	1.20
50	1.20
60	1.20
75	1.20

90

120

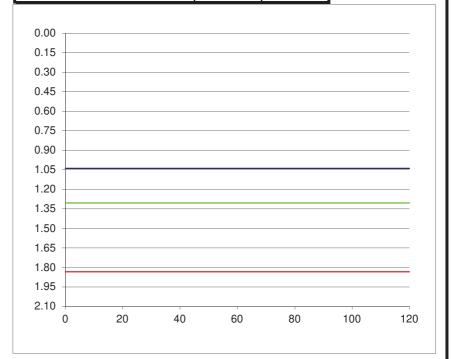
brown dignity dandy gravely d	,	
Pit Dimensions (m)		
Length (m)	2.40	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.20	m
Depth of Water	0.90	m
75% Full	1.43	m
25% Full	1.88	m
75%-25%	0.45	m
Volume of water (75%-25%)	0.76	m3
Area of Drainage	13.02	m2
Area of Drainage (75%-25%)	4.47	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

1.20

1.20

Project Reference: 5599
Contract name: Millers Glen - Phase 5
Location: Swords, Co. Dublin



Test No: SA03 **Date:** 15/05/2019

Ground Conditions		
From	То	
0.00	0.30	Firm light brown slightly sandy gravelly silty CLAY with low cobble content.
0.30	2.10	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with low cobble content.

Elapsed Time	Fall of Water
(mins)	(m)
0	1.04
0.5	1.04
1	1.04
1.5	1.04
2	1.04
2.5	1.04
3	1.04
3.5 4	1.04
4	1.04
4.5	1.04
5	1.04
6	1.04
7	1.04
8	1.04
9	1.04
10	1.04
12	1.04
14	1.04
16	1.04
18	1.04
20	1.04
25	1.04
30	1.04
40	1.04
50	1.04
60	1.04
75	1.04
90	1.04
120	1.04

e content.		
Pit Dimensions (m)		
Length (m)	2.50	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.04	m
Depth of Water	1.06	m
75% Full	1.31	m
25% Full	1.84	m
75%-25%	0.53	m
Volume of water (75%-25%)	0.93	m3
Area of Drainage	13.44	m2
Area of Drainage (75%-25%)	5.142	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

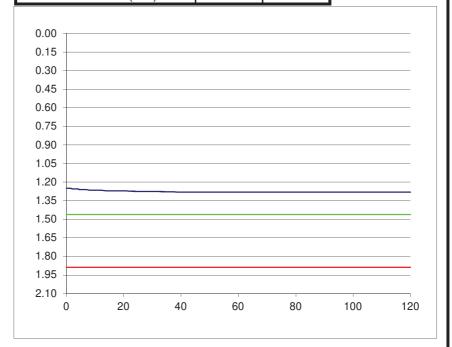
f = Fail or Fail m/min

Project Reference:	5599
Contract name:	Millers Glen - Phase 5
Location:	Swords, Co. Dublin

Test No: SA04 **Date:** 15/05/2019

Duto.		10,00,2010	
Ground Conditions			
From	То		
0.00	1.80	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with	
		medium cobble content.	
1.80	2.10	Very stiff black slightly sandy gravelly silty CLAY with medium cobble and low	
		boulder content.	

Elapsed Time	Fall of Water
(mins)	(m)
0	1.25
0.5	1.25
1	1.25
1.5	1.25
2	1.26
2.5	1.26
3	1.26
3.5	1.26
4	1.26
4.5	1.26
5	1.26
6	1.26
7	1.26
8	1.27
9	1.27
10	1.27
12	1.27
14	1.27
16	1.27
18	1.27
20	1.27
25	1.28
30	1.28
40	1.28
50	1.28
60	1.28
75	1.28


90

120

1.28

1.28

der content.		
Pit Dimensions (m)		
Length (m)	2.30	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.25	m
Depth of Water	0.85	m
75% Full	1.46	m
25% Full	1.89	m
75%-25%	0.43	m
Volume of water (75%-25%)	0.68	m3
Area of Drainage	12.6	m2
Area of Drainage (75%-25%)	4.16	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/s

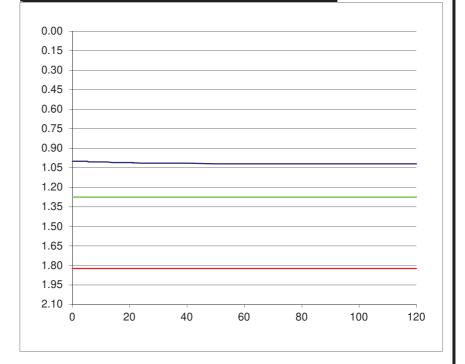
Project Reference:5599Contract name:Millers Glen - Phase 5Location:Swords, Co. Dublin

 Test No:
 SA05

 Date:
 15/05/2019

Ground Conditions		
From	То	
0.00	0.20	Firm brown slightly sandy gravelly silty CLAY.
0.20	2.10	Firm becoming stiff grey brown slightly sandy gravelly silty CLAY with
		Imedium cobble content

0.20	20
Elapsed Time	Fall of Water
(mins)	(m)
0	1.00
0.5	1.00
1	1.00
1.5	1.00
2	1.00
2.5	1.00
3	1.00
3.5	1.00
4	1.00
4.5	1.00
5	1.00
6	1.01
7	1.01
8	1.01
9	1.01
10	1.01
12	1.01
14	1.01
16	1.01
18	1.01
20	1.01
25	1.02
30	1.02
40	1.02
50	1.02
60	1.02
75	1.02


90

120

1.02

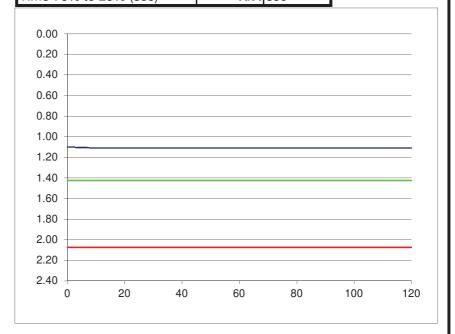
1.02

um cobbie content.		
Pit Dimensions (m)		
Length (m)	2.50	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.00	m
Depth of Water	1.10	m
75% Full	1.28	m
25% Full	1.83	m
75%-25%	0.55	m
Volume of water (75%-25%)	0.96	m3
Area of Drainage	13.44	m2
Area of Drainage (75%-25%)	5.27	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

Project Reference:	5599
Contract name:	Millers Glen - Phase 5
Location:	Swords, Co. Dublin

Test No: SA06 **Date:** 14/05/2019


Ground Conditions		
From	То	
0.00	0.20	MADE GROUND: grey brown sandy gravelly silty clay with medium cobble
		content and some tree roots.
0.20	2.10	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.
2.10	2.30	Dark grey silty sandy GRAVEL with low cobble content.
2.30	2.40	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.

2.10	2.00	
2.30	2.40	
Elapsed Time	Fall of Water	
(mins)	(m)	
0	1.10	
0.5	1.10	
1	1.10	
1.5	1.10	
2	1.10	
2.5	1.10	
3	1.11	
3.5	1.11	
4	1.11	
4.5	1.11	
5	1.11	
6	1.11	
7	1.11 1.11	
8	1.11	
9	1.11	
10	1.11	
12	1.11 1.11	
14	1.11	
16	1.11	
18	1.11	
20	1.11	
25	1.11	
30	1.11	
40	1.11	
50	1.11	
60	1.11	
75	1 11	

90

120

brown slightly sandy slightly gr	averry sinty	OLAT WILIT
Pit Dimensions (m)		
Length (m)	2.10	m
Width (m)	0.70	m
Depth	2.40	m
Water		
Start Depth of Water	1.10	m
Depth of Water	1.30	m
75% Full	1.43	m
25% Full	2.08	m
75%-25%	0.65	m
Volume of water (75%-25%)	0.96	m3
Area of Drainage	13.44	m2
Area of Drainage (75%-25%)	5.11	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

1.11

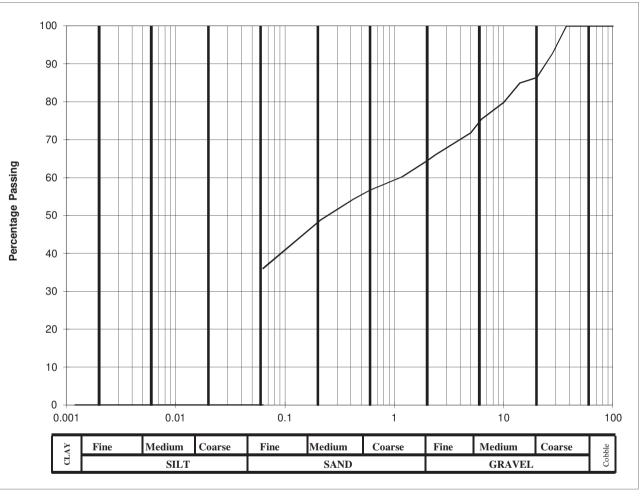
1.11

Appendix 4 Geotechnical Laboratory Test Results

Classification Tests in accordance with BS1377: Part 4

Client	Gannon Homes Ltd.
Site	Millers Glen - Phase 5
S.I. File No	5599 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	7th June 2019

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Min. Dry	Particle	%	Comments	Remarks C=Clay;
		No	No.	Type	Moisture	Limit	Limit	Index	Density	Density	passing		M=Silt Plasticity:
					Content	%	%	%	Mg/m ³	Mg/m^3	425um		L=Low; I=Intermediate;
					%								H =High; V =Very High;
													E=Extremely High
TP01	1.00	MK01	19/755	В	15.4	36	22	14			54.3		CI
TP10	2.50	MK67	19/756	В	10.4	33	23	10			31.0		CL
TP15	1.00	MK50	19/757	В	13.1	35	21	14			39.2		CL
TP27	1.00	MK26	19/758	В	14.7	35	23	12			46.9		CL/CI
TP37	1.00	MK85	19/759	В	10.5	34	20	14			46.1		CL


Printed 20/06/2019

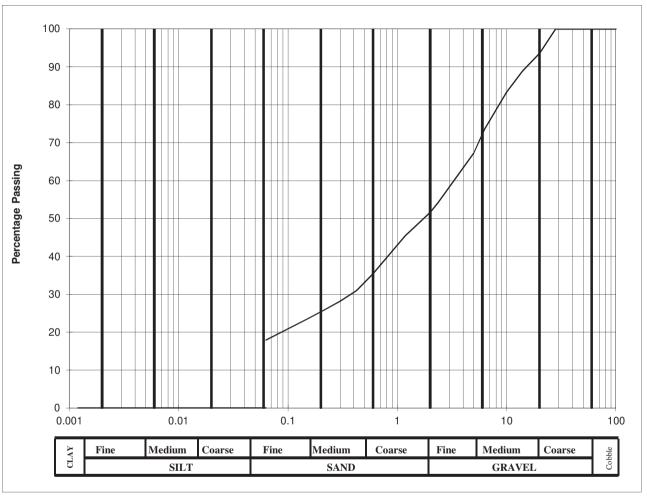
Paddy McGonagle
Sheet 1 of 1

Site Investigations Ltd

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	92.8		
20	86.3		
14	84.9		
10	79.8		
6.3	75.4		
5.0	71.8		
2.36	66		
2.00	64.4		
1.18	60.2		
0.600	56.7		
0.425	54.3		
0.300	51.6		
0.212	48.8		
0.150	45.2		
0.063	36		

Cobbles, %	0
Gravel, %	36
Sand, %	28
Clay / Silt, %	36

Client:	Gannon Homes Ltd.	
Project:	Millers Glen - Phase 5	i


Lab. No:	19/755
Sample No:	MK01

Hole ID:	TP 01
Depth, m:	1.00

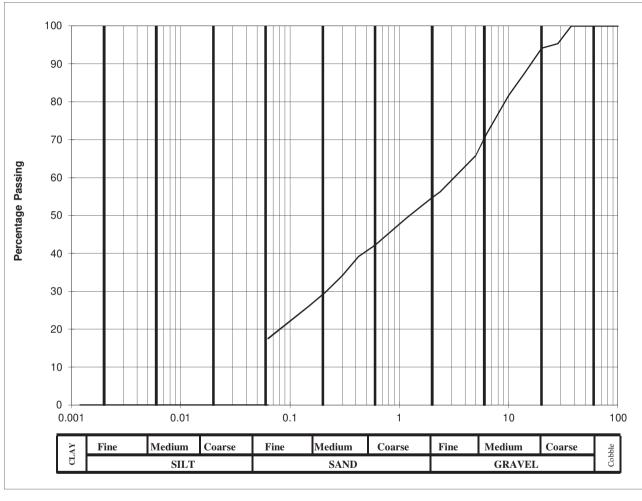
Material description:	slightly sandy gravelly silty CLAY
Damauka	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	93.6		
14	88.9		
10	83.4		
6.3	73.6		
5.0	67.2		
2.36	54.2		
2.00	51.6		
1.18	45.4		
0.600	35.4		
0.425	31		
0.300	28.2		
0.212	25.7		
0.150	23.5		
0.063	18		

Cobbles, %	0
Gravel, %	48
Sand, %	34
Clay / Silt, %	18

Client:	Gannon Homes Ltd.
Project:	Millers Glen - Phase 5

Lab. No:	19/756
Sample No:	MK67


Hole ID :	TP 10
Depth, m:	2.50

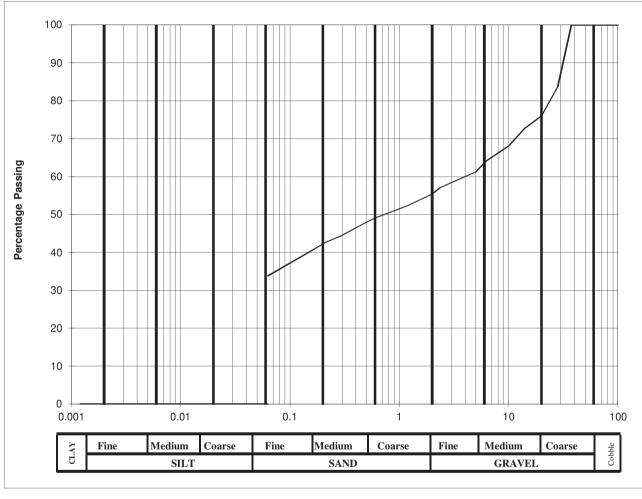
Material description:	slightly sandy gravelly silty CLAY
Damauka	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kemarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

_____Paddy McGonagle Site Investigations Ltd

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	95.3		
20	94.1		
14	87.6		
10	81.7		
6.3	71.5		
5.0	65.8		
2.36	56.2		
2.00	54.7		
1.18	49.5		
0.600	42.1		
0.425	39.2		
0.300	34.1		
0.212	29.8		
0.150	26.2		
0.063	18		

Cobbles, %	0
Gravel, %	45
Sand, %	37
Clay / Silt, %	18

Client:	Gannon Homes Ltd.
Project:	Millers Glen - Phase 5


Lab. No :	19/757
Sample No:	MK50

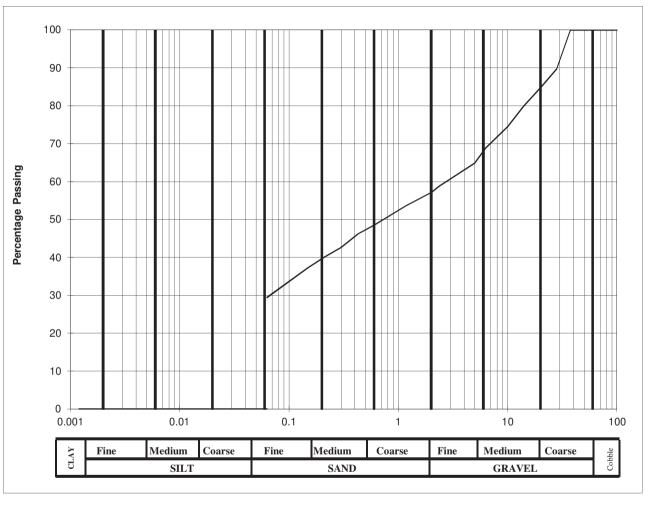
Hole ID:	TP 15
Depth, m:	1.00

Material description:	sandy gravelly silty CLAY
	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	83.6		
20	76		
14	72.7		
10	68.1		
6.3	64.2		
5.0	61.2		
2.36	57.1		
2.00	55.4		
1.18	52.3		
0.600	49.1		
0.425	46.9		
0.300	44.5		
0.212	42.6		
0.150	40.1		
0.063	34		

Cobbles, %	0
Gravel, %	45
Sand, %	21
Clay / Silt, %	34

	Client:	Gannon Homes Ltd.	
ı	Project:	Millers Glen - Phase 5	


Lab. No:	19/758
Sample No:	MK26

Hole ID :	TP 27
Depth, m:	1.00

Material description:	slightly sandy gravelly silty CLAY
Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	meter analysis		
size, mm	passing	Diameter, mm	% passing		
100	100	0.0630			
90	100	0.0200			
75	100	0.0060			
63	100	0.0020			
50	100				
37.5	100				
28	89.7				
20	84.8				
14	79.9				
10	74.5				
6.3	68.8				
5.0	64.9				
2.36	58.8				
2.00	57.1				
1.18	53.6				
0.600	48.5				
0.425	46.1				
0.300	42.6				
0.212	40.1				
0.150	37.3				
0.063	29				

Cobbles, %	0
Gravel, %	43
Sand, %	28
Clay / Silt, %	29

Client:	Gannon Homes Ltd.
Project:	Millers Glen - Phase 5

Lab. No :	19/759
Sample No:	MK85

Hole ID:	TP 37
Depth, m:	1.00

Material description:	slightly sandy gravelly silty CLAY
Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Gannon Homes Ltd.
Site	Millers Glen - Phase 5
S.I. File No	5599 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	13th June 2019

CBR No	Depth	Sample	Sample	Lab Ref	Moisture Content	CBR Value (%)	Location / Remarks
	(mBGL)	No	Type		(%)		
CBR01	0.50	MK100	CBR	19/760	12.3	12.7	
CBR02	0.50	MK101	CBR	19/761	11.6	9.3	Sample taken from TP41
CBR03	0.50	MK102	CBR	19/762	14.2	8.6	Sample taken from TP39
CBR04	0.50	MK103	CBR	19/763	12.7	7.7	Sample taken from TP38
CBR05	0.50	MK104	CBR	19/764	10.5	9.4	
CBR06	0.50	MK105	CBR	19/765	13.7	14.0	
CBR07	0.50	MK106	CBR	19/766	15.7	5.8	
CBR08	0.50	MK107	CBR	19/767	20.3	6.1	
CBR09	0.50	MK108	CBR	19/768	11.1	9.7	
CBR10	0.50	MK109	CBR	19/769	26.7	8.1	
CBR11	0.50	MK110	CBR	19/770	13.8	8.9	Sample taken from TP33
CBR12	0.50	MK111	CBR	19/771	17.4	7.7	Sample taken from TP28
CBR13	0.50	MK112	CBR	19/772	15.7	13.2	
CBR14	0.50	MK113	CBR	19/773	13.7	7.7	Sample taken from TP24
CBR15	0.50	MK114	CBR	19/774	12.8	8.1	
CBR16	0.50	MK115	CBR	19/775	17.4	7.3	Sample taken from TP29
CBR17	0.50	MK116	CBR	19/776	10.0	7.3	
CBR18	0.50	MK117	CBR	19/777	14.6	7.7	
CBR19	0.50	MK118	CBR	19/778	11.0	7.3	Sample taken from TP03
CBR20	0.50	MK119	CBR	19/779	12.1	7.8	Sample taken from TP04
CBR21	0.50	MK120	CBR	19/780	12.4	6.9	Sample taken from TP18
CBR22	0.50	MK121	CBR	19/781	31.2	6.2	Sample taken from TP16
CBR23	0.50	MK122	CBR	19/782	20.5	6.9	

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Gannon Homes Ltd.
Site	Millers Glen - Phase 5
S.I. File No	5599 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	13th June 2019

CBR No	Depth	Sample	Sample	Lab Ref	Moisture Content	CBR Value (%)	Location / Remarks
	(mBGL)	No	Type		(%)		
CBR24	0.50	MK123	CBR	19/783	18.4	7.2	
CBR25	0.50	MK124	CBR	19/784	21.4	4.7	
CBR26	0.50	MK125	CBR	19/785	12.5	8.6	
CBR27	0.50	MK126	CBR	19/786	17.8	6.4	Sample taken from TP14
CBR28	0.50	MK127	CBR	19/787	9.0	11.6	Sample taken from TP09
CBR29	0.50	MK128	CBR	19/788	11.0	7.9	Sample taken from TP05
CBR30	0.50	MK129	CBR	19/789	12.0	7.4	
CBR31	0.50	MK130	CBR	19/790	11.6	8.1	Sample taken from TP07
CBR32	0.50	MK131	CBR	19/791	15.6	4.2	
CBR33	0.50	MK132	CBR	19/792	15.2	3.8	Sample taken from TP11
CBR34	0.50	MK133	CBR	19/793	13.6	5.3	Sample taken from TP10
CBR35	0.50	MK134	CBR	19/794	12.1	8.3	
CBR36	0.50	MK135	CBR	19/795	20.7	6.5	
CBR37	0.50	MK136	CBR	19/796	13.3	5.3	Sample taken from TP13

Chemical Testing In accordance with BS 1377: Part 3

Client	Gannon Homes Ltd.
Site	Millers Glen - Phase 5
S.I. File No	5599 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	7th June 2019

Hole Id	Depth	Sample	Lab Ref	рН	Water Soluble	Water Soluble	Loss on	Chloride	% passing	Remarks
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Ignition	ion	2mm	
					(2:1 Water-soil	(2:1 Water-soil	(Organic	Content		
					extract) (SO ₃)	extract) (SO ₃)	Content)	(water:soil		
					g/L	%	%	ratio 2:1)		
								%		
TP01	1.00	MK01	19/755	7.96	0.116	0.075		0.19	64.4	
TP10	2.50	MK67	19/756	7.89	0.130	0.067		0.18	51.6	
TP15	1.00	MK50	19/757	7.96	0.126	0.069		0.21	54.7	
TP27	1.00	MK26	19/758	8.07	0.123	0.068		0.17	55.4	
TP37	1.00	MK85	19/759	8.01	0.117	0.067		0.19	57.1	

_____Paddy McGonagle
Site Investigations Ltd.

Appendix 5 Environmental Laboratory Test Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701

email: hawardencustomerservices@alsglobal.com

Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date of report Generation: 29 May 2019

Customer: Site Investigations Ltd

Sample Delivery Group (SDG): 190521-93
Your Reference: 5599

Location: Millers Glen - Phase 5

Report No: 507840

We received 5 samples on Tuesday May 21, 2019 and 5 of these samples were scheduled for analysis which was completed on Wednesday May 29, 2019. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

Validated

CERTIFICATE OF ANALYSIS

190521-93 5599 507840 SDG: Client Reference: Report Number: Location: Millers Glen - Phase 5 Order Number: 46/A/19 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
19996776	CBR6		0.50 - 0.50	20/05/2019
19996774	TP6		0.50 - 0.50	20/05/2019
19996775	TP14		0.50 - 0.50	20/05/2019
19996779	TP29		0.50 - 0.50	20/05/2019
19996778	TP34		0.30 - 0.30	20/05/2019

Maximum Sample/Coolbox Temperature (°C):

ISO5667-3 Water quality - Sampling - Part3 During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

10.6

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of (5±3)°C for a period of up to 24hrs.

Only received samples which have had analysis scheduled will be shown on the following pages.

ALS

SDG: 190521-93 Client Reference: 5599 Report Number: 507840 Millers Glen - Phase 5 Order Number: 46/A/19 Superseded Report: Location: Results Legend 19996776 19996779 19996778 Lab Sample No(s) X Test No Determination Possible Customer TP14 TP29 TP34 TP6 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 0.50 0.50 0.50 0.50 0.30 SA - Saline Water Depth (m) - 0.30 TE - Trade Effluent - 0.50 - 0.50 - 0.50 - 0.50 TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 60g VOC (ALE215) 60g VOC (ALE215) 60g VOC (ALE215) 60ml Amber Glass Jar 60g VOC (ALE215) 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) 1kg TUB 250g Amber Ja (ALE210) 1kg TUB 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory 1kg TUB UNL - Unspecified Liquid 1kg TUB SL - Sludge Container G - Gas OTH - Other Jar Sample Type S S S S S S S S S S S S S S S Anions by Kone (w) All NDPs: 0 Tests: 5 Χ Χ Χ Χ Χ Asbestos ID in Solid Samples All NDPs: 0 Tests: 1 X **CEN Readings** All NDPs: 0 Tests: 5 X Х Х Χ Chromium III All NDPs: 0 Tests: 5 Χ Х Х Х X Coronene All NDPs: 0 Tests: 5 Χ Χ Χ Χ Χ Dissolved Metals by ICP-MS All NDPs: 0 Tests: 5 Χ Χ Χ X Dissolved Organic/Inorganic Carbon All NDPs: 0 Tests: 5 Χ Χ X X Χ EPH CWG (Aliphatic) GC (S) All NDPs: 0 Tests: 5 Χ X X X Χ EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 5 Χ Χ Χ X X Fluoride All NDPs: 0 Tests: 5 Х X Х X GRO by GC-FID (S) All NDPs: 0 Tests: 5 Χ Χ Χ X X All Hexavalent Chromium (s) NDPs: 0 Tests: 5 Χ X Χ Χ X Loss on Ignition in soils All NDPs: 0 Tests: 5 Χ Χ Χ Χ Х Mercury Dissolved All NDPs: 0 Tests: 5 Χ Х Χ Χ Metals in solid samples by OES All NDPs: 0 Tests: 5 Χ X Χ X X

Validated

CERTIFICATE OF ANALYSIS

ALS	

SDG: 190521-93 Client Reference: 5599 Report Number: 507840 Millers Glen - Phase 5 Order Number: 46/A/19 Superseded Report: Location: Results Legend 19996775 19996779 19996778 9996776 Lab Sample No(s) X Test No Determination Possible Customer TP14 TP34 TP29 TP6 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 0.50 0.50 0.30 0.50 0.50 SA - Saline Water Depth (m) - 0.50 TE - Trade Effluent - 0.50 - 0.50 - 0.50 -0.30 TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 60g 60g VOC (ALE215) 60g 60g 60ml Amber Glass Jar 250g Amber Jar (ALE210) 1kg TUB 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory VOC (ALE215 VOC (ALE215) VOC (ALE215) UNL - Unspecified Liquid 1kg TUB SL - Sludge Container G - Gas OTH - Other Sample Type S S S S S S S S S S S S S S S Mineral Oil All NDPs: 0 Χ X X X Χ PAH by GCMS All NDPs: 0 Tests: 5 Χ X Χ X X PCBs by GCMS All NDPs: 0 Tests: 5 Х Χ Χ Χ X All Phenols by HPLC (W) NDPs: 0 Tests: 5 Х Х Χ Χ Х Sample description All NDPs: 0 Tests: 5 Χ Χ Χ X Χ Total Dissolved Solids on Leachates All NDPs: 0 Tests: 5 X Χ X X Χ Total Organic Carbon All NDPs: 0 Tests: 5 X X X X Χ TPH CWG GC (S) All NDPs: 0 Tests: 5 Χ Χ Х X Χ VOC MS (S) All NDPs: 0 Tests: 5 Χ X Χ X Χ

Validated

 SDG:
 190521-93

 Location:
 Millers Glen - Phase 5

Client Reference: Order Number: 5599 46/A/19 Report Number: Superseded Report: 507840

Sample Descriptions

Grain Sizes

very fine	<0.06	3mm	fine	0.063	8mm - 0.1mm	medi	ium	0.1mm	- 2mm	coar	se	2mm - 1	0mm	very coa	rse	>1	0mm
Lab Sample	No(s)	Custome	er Sample R	ef.	Depth (m)		Colour		Descript	ion	In	clusions	Inclu	sions 2			
1999677	6		CBR6		0.50 - 0.50		Dark Brov	vn	Sandy Lo	am		Stones	N	one			
1999677	'4		TP6		0.50 - 0.50		Dark Brov	vn	Silt Loar	n		Stones	Crush	ed Brick			
1999677	75		TP14		0.50 - 0.50		Dark Brov	vn	Silt Loar	n		Stones	Vege	etation			
1999677	'9		TP29		0.50 - 0.50		Dark Brov	vn	Loamy Sa	and	V	egetation	Sto	ones			
1999677	78		TP34		0.30 - 0.30		Dark Brov	vn	Loamy Sa	and		Stones	N	one			

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

 SDG:
 190521-93

 Location:
 Millers Glen - Phase 5

Client Reference: Order Number:

5599 46/A/19 Report Number: Superseded Report:

507840

Page									
Barborne Barborne			Customer Sample Ref.	CBR6	TP6	TP14	TP29	TP34	
Second Part Part									
Description	diss.filt Dissolved / filtered sample.								
Compared Part Compared Par	 * Subcontracted - refer to subcontractor report 	t for							ı
Column C		k the		20/03/2013	20/03/2019	20/03/2013	20/03/2013	20/00/2019	ı
Compared Compared	efficiency of the method. The results of indivi	idual		21/05/2019	21/05/2019	21/05/2019	21/05/2019	21/05/2019	ı
Total principle Total prin		for the							ı
Component County County	(F) Trigger breach confirmed		Lab Sample No.(s)	19996776	19996774	19996775	19996779	19996778	ı
Michaeline Chemistration (N. of as secured sample)		LOD/Units							I
New Age of the Companies New Age New Age		_		15	10	14	15	6.3	
Less origination 40.7 % TM018	,	,,,	1 11102 1	10	10	''	10	0.0	I
Marken M	. /	-0.7.0/	TM040	4.44	4.05	0.05	0.70	4.00	
Mineral al > C10-C40	Loss on ignition	<0.7 %	1101010						ı
Description Carbon, Total Carbon, Total									
Chromium, Heavewhert	Mineral oil >C10-C40	<1 mg/kg	TM061	<1	<1	<1	<1	<1	I
Chromium, Heavewhert									
Chromum, Heavalent	Organic Carbon, Total	<0.2 %	TM132	0.663	0.452	0.484	0.466	0.534	I
PCB congener 28				M	M	M	M	М	ı
PCB congener 28	Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	<0.6	<0.6	<0.6	
PCB congener 28	·			#	#	#	#	#	ı
PCB congener \$2	PCR congener 28	<3 ua/ka	TM168						
PCB congener 52	T OD congener 20	-5 μg/kg	1101100						ı
PCB congener 101	DOD congency 50	-0 . "	T84400		-				
PCB congener 101	POB congener 52	<3 µg/kg	1M168						I
PCB congener 118			1						
PCB congener 118	PCB congener 101	<3 µg/kg	TM168						I
PCB congener 138				M	M	M	M	М	
PCB congener 138	PCB congener 118	<3 µg/kg	TM168	<3	<3	<3	<3	<3	
PCB congener 153	-			M	М	М	M	М	
PCB congener 153	PCB congener 138	<3 µa/ka	TM168						
PCB congener 153	y. ::::::	פיייפיז -							
PCB congener 180	DCB congopor 153	<3 ua/ka	TM160						
PCB congener 180	FGB congener 155	√o μg/kg	1101100						I
M									
Sum of detected PCB 7 <21 µg/kg TM168 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <21 <2	PCB congener 180	<3 µg/kg	TM168						I
Congeners Congeners Chromium, Trivalent 4.0.9 mg/kg TM181 18.7 9.28 11.9 12 <0.9 Antimony <0.6 mg/kg				M	M	M	M	М	
Chromium, Trivalent	Sum of detected PCB 7	<21 µg/kg	TM168	<21	<21	<21	<21	<21	
Antimony <0.6 mg/kg TM181 1.88	Congeners								
Antimony <0.6 mg/kg TM181 1.88	Chromium, Trivalent	<0.9 mg/kg	TM181	18.7	9.28	11.9	12	<0.9	
Arsenic	,								
Arsenic	Antimony	<0.6 mg/kg	TM181	1.88	1 73	1.86	2	2 1/	
Arsenic	Trumony	10.0 mg/kg	1101101						
Barium	A i -	40.0	TN404		_				
Barium	Arsenic	<0.6 mg/kg	1101181						
Cadmium									
Cadmium	Barium	<0.6 mg/kg	TM181						
Chromium				#	#	#	#		
Chronium	Cadmium	<0.02 mg/kg	g TM181	1.93	1.27	1.52	1.33	0.222	
Copper				M	M	M	M	М	
Copper	Chromium	<0.9 mg/kg	TM181	18.7	9.28	11.9	12	<0.9	
Copper <1.4 mg/kg TM181 29.3 28.1 30 31.3 12.9 Lead <0.7 mg/kg					М	М	M	М	
Marcury Co.14 mg/kg TM181 24.9 20.6 19.6 19.6 19.6 19.3 19.6 19.	Copper	<1.4 ma/ka	TM181						
Lead	- Coppoi	· i.¬ ilig/kg	, , , , , , , , , , , , , , , , , , , ,						
Mercury	Load	∠0.7 ma/!	TM404						
Mercury	Leau	~∪./ IIIg/kg	11/1101						
Molybdenum		.0.44 "	73.440.1						
Molybdenum	Mercury	<0.14 mg/kg	g IM181						
Mickel									
Nickel	Molybdenum	<0.1 mg/kg	TM181				3.11	0.422	
Selenium M </td <td></td> <td></td> <td></td> <td>#</td> <td>#</td> <td>#</td> <td>#</td> <td>#</td> <td></td>				#	#	#	#	#	
Selenium M </td <td>Nickel</td> <td><0.2 mg/kg</td> <td>TM181</td> <td>48.3</td> <td>36.2</td> <td>37.6</td> <td>38.4</td> <td>31.8</td> <td></td>	Nickel	<0.2 mg/kg	TM181	48.3	36.2	37.6	38.4	31.8	
Selenium <1 mg/kg TM181 <1			1						
# # # # # # # Zinc <1.9 mg/kg TM181 86.4 72.7 64.7 68.9 62.6 M M M M M M M	Selenium	<1 ma/ka	TM181						
Zinc <1.9 mg/kg TM181 86.4 72.7 64.7 68.9 62.6 M M M M M M		9/1.9							
M M M M	Zinc	<10 mall-	TM191		<u> </u>				
	ZIIIG	\1.9 mg/kg	IIVIIÖI						
Loronene <200 μg/kg IM410 <200 <200 <200 <200 <200 <200 <200 <2	0	.000 "	77.4.4.0						
	Coronene	<200 µg/kg	g IM410	<200	<200	<200	<200	<200	
			1						
			1						ı
			+ +						
									I
			+ +						
			1						
			+						
			1						

ALS

 SDG:
 190521-93
 Client Reference:
 5599
 Report Number:
 507840

 Location:
 Millers Glen - Phase 5
 Order Number:
 46/A/19
 Superseded Report:

PAH by GCMS										
Results Legend # ISO17025 accredited.		Customer Sample Ref.	CBR6		TP6		TP14	TP29	TP34	
M mCERTS accredited. aq Aqueous / settled sample.										
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Depth (m)	0.50 - 0.50		0.50 - 0.50		0.50 - 0.50	0.50 - 0.50	0.30 - 0.30	
* Subcontracted - refer to subcontractor report	for	Sample Type Date Sampled	Soil/Solid (S) 20/05/2019		Soil/Solid (S) 20/05/2019		Soil/Solid (S) 20/05/2019	Soil/Solid (S) 20/05/2019	Soil/Solid (S) 20/05/2019	
accreditation status. ** % recovery of the surrogate standard to check		Sample Time								
efficiency of the method. The results of individ compounds within samples aren't corrected for		Date Received	21/05/2019		21/05/2019		21/05/2019	21/05/2019	21/05/2019	
recovery (F) Trigger breach confirmed		SDG Ref Lab Sample No.(s)	190521-93 19996776		190521-93 19996774		190521-93 19996775	190521-93 19996779	190521-93 19996778	
1-3+§@ Sample deviation (see appendix)		AGS Reference								
Component	LOD/Uni		_	+		_	-			
Naphthalene	<9 µg/k	g TM218	<9		<9		<9	<9	<9	
				М		M	N	_		
Acenaphthylene	<12 µg/l	kg TM218	<12		<12		<12	<12	<12	
				М		M	<u> </u>			
Acenaphthene	<8 µg/k	g TM218	<8		<8		<8	<8	<8	
				М		M		M M		
Fluorene	<10 µg/l	kg TM218	<10		<10	.,	<10	<10	<10	
DI II	.45 //	TN4040		М	.45	М	.45			
Phenanthrene	<15 µg/l	kg TM218	<15		<15	.,	<15	<15	<15	
A #	.40 //	TN4040		М	-40	М	.10			
Anthracene	<16 µg/l	kg TM218	<16	М	<16	М	<16	<16	<16	
Characters -	447 //	TM040		М	-47	М	117			
Fluoranthene	<17 µg/l	kg TM218	<17	M	<17	N.A	<17	<17	<17	
Durono	~1E ···-!!	(a TM040		M	∠1 E	М	<15			
Pyrene	<15 µg/l	kg TM218	<15	M	<15	N.A	<15	<15	<15	
Ponz/a)anthrocono	~1A · · · · ·	kg TM218	<14	М	<14	М	<14	/I M	<14	
Benz(a)anthracene	<14 µg/l	kg TIVIZ 10		М	<14	М				
Chrysene	<10 µg/l	kg TM218	<10	IVI	<10	IVI	<10	<10	<10	
Onlysene	10 μg/1	Ng TIVIZ 10		М	110	М	10			
Benzo(b)fluoranthene	<15 µg/l	kg TM218	<15	IVI	<15	IVI	<15	<15	<15	
Denzo(b)nuorantnene	10 μg/1	Ng TIVIZ 10		М	113	М	10		1	
Benzo(k)fluoranthene	<14 µg/l	kg TM218	<14	IVI	<14	101	<14	<14	<14	
Denzo(k)ndorantirene	i τη μg/i	Ng TIWIZ TO		М	117	М	114			
Benzo(a)pyrene	<15 µg/l	kg TM218	<15		<15		<15	<15	<15	
Bonzo(a)pyrono	l no pg/	1111210		М	10	М	1,0			
Indeno(1,2,3-cd)pyrene	<18 µg/l	kg TM218	<18		<18		<18	<18	<18	
	1	.9		М		М				
Dibenzo(a,h)anthracene	<23 µg/l	kg TM218	<23		<23		<23	<23	<23	
		Ĭ		М		М	ı	л М	M	
Benzo(g,h,i)perylene	<24 µg/l	kg TM218	<24		<24		<24	<24	<24	
		Ĭ	1	М		М	ı	И	M	
PAH, Total Detected USEPA 16	<118 µg/	/kg TM218	<118	Т	<118		<118	<118	<118	
				Т						
				\perp						
				_						
				4						
				+		_				
				+		_				
				+		\dashv				
				+		\dashv				
				+		-				
				+		\dashv				
				+		\dashv				
				+		\dashv				
				+		\dashv				
				+		\dashv				
				+		\dashv				
				_				-		

Client Reference: Order Number: Report Number: Superseded Report: SDG: 190521-93 5599 507840 Millers Glen - Phase 5 46/A/19 Location:

TPH CWG (S)								
Results Legend # ISO17025 accredited.		Customer Sample Ref.	CBR6	TP6	TP14	TP29	TP34	
M mCERTS accredited. aq Aqueous / settled sample. diss.filit Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. Subcontracted - refer to subcontractor report accreditation status.		Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S) 20/05/2019	0.30 - 0.30 Soil/Solid (S) 20/05/2019				
** % recovery of the surrogate standard to che efficiency of the method. The results of indiv compounds within samples aren't corrected recovery (F) Trigger breach confirmed 1-34§@ Sample deviation (see appendix)	vidual .	Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	21/05/2019 190521-93 19996776	21/05/2019 190521-93 19996774	21/05/2019 190521-93 19996775	21/05/2019 190521-93 19996779	21/05/2019 190521-93 19996778	
Component GRO Surrogate % recovery**	LOD/Unit		126	98.7	98	118	49.8	
GRO Surrogate % recovery			120	90.7	96 2	110	49.6	
GRO TOT (Moisture Corrected)	<100 µg/		<100 M	<100 M	<100 2 M	<100 M	<100 3#	
Aliphatics >C5-C6	<10 µg/k	rg TM089	<10	<10	<10 2	<10	53.4 3	
Aliphatics >C6-C8	<10 µg/k	rg TM089	<10	<10	<10 2	<10	<10	
Aliphatics >C8-C10	<10 µg/k	rg TM089	<10	<10	<10 2	<10	11.7 3	
Aliphatics >C10-C12	<10 µg/k	rg TM089	<10	<10	<10 2	<10	<10	
Aliphatics >C12-C16	<100 µg/	kg TM173	<100	<100	<100	<100	<100	
Aliphatics >C16-C21	<100 µg/	kg TM173	<100	<100	<100	<100	<100	
Aliphatics >C21-C35	<100 µg/	kg TM173	250	<100	<100	<100	3210	
Aliphatics >C35-C44	<100 µg/	kg TM173	<100	<100	<100	<100	<100	
Total Aliphatics >C12-C44	<100 µg/	kg TM173	250	<100	<100	<100	3210	
Aromatics >EC5-EC7	<10 µg/k	g TM089	<10	<10	<10 2	<10	<10 3	
Aromatics >EC7-EC8	<10 µg/k	g TM089	<10	<10	<10 2	<10	<10	
Aromatics >EC8-EC10	<10 µg/k	g TM089	<10	<10	<10	<10	<10	
Aromatics >EC10-EC12	<10 µg/k	g TM089	<10	<10	<10	<10	<10	
Aromatics >EC12-EC16	<100 µg/	kg TM173	<100	<100	<100	<100	<100	
Aromatics >EC16-EC21	<100 µg/	kg TM173	402	<100	<100	<100	<100	
Aromatics >EC21-EC35	<100 µg/	kg TM173	4210	<100	<100	<100	869	
Aromatics >EC35-EC44	<100 µg/	kg TM173	913	<100	<100	<100	<100	
Aromatics >EC40-EC44	<100 µg/	kg TM173	<100	<100	<100	<100	<100	
Total Aromatics >EC12-EC44	<100 µg/	kg TM173	5530	<100	<100	<100	869	
Total Aliphatics & Aromatics >C5-C44	<100 µg/	kg TM173	5780	<100	<100	<100	4150	
GRO >C5-C6	<20 µg/k	rg TM089	<20	<20	<20 2	<20	53.4 3	
GRO >C6-C7	<20 µg/k	rg TM089	<20	<20	<20 2	<20	<20 3	
GRO >C7-C8	<20 µg/k	rg TM089	<20	<20	<20 2	<20	<20 3	
GRO >C8-C10	<20 µg/k	rg TM089	<20	<20	<20 2	<20	<20	
GRO >C10-C12	<20 µg/k	g TM089	<20	<20	<20 2	<20	<20 3	

ALS

 SDG:
 190521-93
 Client Reference:
 5599
 Report Number:
 507840

 Location:
 Millers Glen - Phase 5
 Order Number:
 46/A/19
 Superseded Report:

VOC MS (S)								
Results Legend # ISO17025 accredited.	C	Customer Sample Ref.	CBR6	TP6	TP14	TP29	TP34	
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report	for	Depth (m) Sample Type	0.50 - 0.50 Soil/Solid (S)	0.30 - 0.30 Soil/Solid (S)				
accreditation status. ** % recovery of the surrogate standard to check	k the	Date Sampled Sample Time	20/05/2019	20/05/2019	20/05/2019	20/05/2019	20/05/2019	
efficiency of the method. The results of indivi- compounds within samples aren't corrected for recovery		Date Received SDG Ref	21/05/2019 190521-93	21/05/2019 190521-93	21/05/2019 190521-93	21/05/2019 190521-93	21/05/2019 190521-93	
(F) Trigger breach confirmed 1-3+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	19996776	19996774	19996775	19996779	19996778	
Component	LOD/Units	Method	104	407	105	400	100	
Dibromofluoromethane**	%	TM116	104	107	125 2	122	109	
Toluene-d8**	%	TM116	97.5	98.7	99 2	99.1	98	
4-Bromofluorobenzene**	%	TM116	85.7	95	96.6 2	94.6	83.2	
Methyl Tertiary Butyl Ether	<10 µg/kg	TM116	<10 M	<10 M	<10 2 M	<10 M	<100 M	
Benzene	<9 µg/kg	TM116	<9 M	<9 M	<9 2 M	<9 M	<90 M	
Toluene	<7 µg/kg	TM116	<7 M	10.4 M	14.2 2 M	10.5 M	<70 M	
Ethylbenzene	<4 µg/kg	TM116	<4	<4	<4	<4	<40	
p/m-Xylene	<10 µg/kg	TM116	<10 M	<10 M	2 M <10	<10 M	<100	
o-Xylene	<10 µg/kg	TM116	<10	<10	<10	<10 #	<100	
			M	M	2 M	M	M	

Validated

CERTIFICATE OF ANALYSIS

 SDG:
 190521-93
 Client Reference:
 5599
 Report Number:
 507840

 Location:
 Millers Glen - Phase 5
 Order Number:
 46/A/19
 Superseded Report:

Asbestos Identification - Solid Samples

Resul	its Legend										
# ISO17025 ac M mCERTS ac											
* Subcontract	ted test.	Date of Analysis	Analysed By	Comments	Amosite	Chrysotile	Crocidolite	Fibrous	Fibrous	Fibrous	Non-A
(F) Trigger brea	ch confirmed				(Brown)	(White)	(Blue) Asbestos	Actinolite	Anthophyllite	Tremolite	Fi
1-5&+§@ Sample dev	iation (see appendix)				Asbestos	Asbestos					
Cust. Sample Ref.	TP6	23/05/2019	Agnieszka	-	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not D
Depth (m)	0.50 - 0.50		Chelmowska		(#)	(#)	(#)	(#)	(#)	(#)	
Sample Type	SOLID		oneoviona		(")	(")	(")	(")	(")	(")	
Date Sampled	20/05/2019 00:00:00										
Date Receieved	21/05/2019 09:30:00										
SDG	190521-93										
Original Sample	19996774										
Method Number	TM048										

 SDG:
 190521-93

 Location:
 Millers Glen - Phase 5

Client Reference: Order Number:

5599 46/A/19 Report Number: Superseded Report: 507840

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESU	JLTS					REF: BS	EN 12457/2
Client Reference			Site Location		Millers	Glen - Phase	5
Mass Sample taken (kg)	0.100		Natural Moisture	e Content (%)	11.1		
Mass of dry sample (kg)	0.090		Dry Matter Cont	` '	90		
Particle Size <4mm	>95%		2. y	(70)			
Case					Landf	ill Waste Acce	otance
SDG	190521-93					Criteria Limits	
Lab Sample Number(s)	19996774						
Sampled Date	20-May-2019					Stable	
-	•				Inert Waste	Non-reactive	Hazardous
Customer Sample Ref.	TP6				Landfill	Hazardous Waste in Non-	Waste Landfill
Depth (m)	0.50 - 0.50					Hazardous Landfill	
Solid Waste Analysis	Result					Landini	
Total Organic Carbon (%)	0.452				3	5	6
Loss on Ignition (%)	1.65				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021				1	-	-
Mineral Oil (mg/kg)	<1				500	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)					-		
Eluate Analysis	C ₂ Conc ⁿ in :	LO:1 eluate (mg/l)	A2 10:1 conc	ⁿ leached (mg/kg)		es for compliance lea S EN 12457-3 at L/S	
	Result	Limit of Detection	Result	Limit of Detection	0.5		0.5
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00791	<0.0002	0.0791	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	<0.0003	<0.0003	<0.003	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.00947	<0.003	0.0947	<0.03	0.5	10	30
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000

Leach Test Information

Total Dissolved Solids

Total Monohydric Phenols (W)

Dissolved Organic Carbon

Date Prepared	22-May-2019
pH (pH Units)	8.47
Conductivity (µS/cm)	72.30
Temperature (°C)	20.20
Volume Leachant (Litres)	0.890

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

58.1

<0.016

<3

<10

<0.016

<3

581

<0.16

<30

<100

<0.16

<30

4000

1

500

60000

800

100000

1000

SDG: 190521-93 Location: Millers Glen - Phase 5 Client Reference: Order Number: 5599 46/A/19 Report Number: Superseded Report: 507840

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESI	ULTS					REF: BS	EN 12457/2
Client Reference			Site Location		Millers	s Glen - Phase :	5
Mass Sample taken (kg)	0.105		Natural Moistur	e Content (%)	16.3		
Mass of dry sample (kg)	0.090		Dry Matter Conf		86		
Particle Size <4mm	>95%		Dry Matter Com	territ (70)	00		
Particle Size <4mm	>95 %						
Case					Landf	fill Waste Accep	otance
SDG	190521-93					Criteria Limits	
Lab Sample Number(s)	19996775						
Sampled Date	20-May-2019					Stable	
Customer Sample Ref.	TP14				Inert Waste	Non-reactive Hazardous Waste	Hazardous
·					Landfill	in Non-	Waste Landfill
Depth (m)	0.50 - 0.50					Hazardous Landfill	
Solid Waste Analysis	Result						
Total Organic Carbon (%)	0.484				3	5	6
Loss on Ignition (%)	2.85				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021				1	-	-
Mineral Oil (mg/kg)	<1 -				500	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units) ANC to pH 6 (mol/kg)	-				_		-
ANC to pH 4 (mol/kg)	-				_	-	-
The top in (meaning)							
Eluate Analysis	C ₂ Conc ⁿ in	l0:1 eluate (mg/l)	A2 10:1 cond	en leached (mg/kg)	Limit valu	es for compliance lea	china tost
					using E	-	-
	Result	Limit of Detection	Result	Limit of Detection	using E	3S EN 12457-3 at L/S	-
Arsenic	Result <0.0005	Limit of Detection <0.0005	Result <0.005	Limit of Detection <0.005	using E	-	-
Arsenic Barium						3S EN 12457-3 at L/S	10 l/kg
	<0.0005	<0.0005	<0.005	<0.005	0.5	2	10 l/kg 25
Barium	<0.0005 0.0127	<0.0005 <0.0002	<0.005 0.127	<0.005 <0.002	0.5 20	2 100	10 l/kg 25 300
Barium Cadmium	<0.0005 0.0127 <0.00008	<0.0005 <0.0002 <0.0008	<0.005 0.127 <0.0008	<0.005 <0.002 <0.0008	0.5 20 0.04	2 100 1	25 300 5
Barium Cadmium Chromium Copper	<0.0005 0.0127 <0.00008 <0.001	<0.0005 <0.0002 <0.00008 <0.001	<0.005 0.127 <0.0008 <0.01	<0.005 <0.002 <0.0008 <0.01	0.5 20 0.04 0.5	2 100 1	25 300 5 70
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF)	<0.0005 0.0127 <0.00008 <0.001 <0.0003	<0.0005 <0.0002 <0.00008 <0.001 <0.0003	<0.005 0.127 <0.0008 <0.01 <0.003	<0.005 <0.002 <0.0008 <0.01 <0.003	0.5 20 0.04 0.5 2	2 100 1 10 50	25 300 5 70
Barium Cadmium Chromium Copper	<0.0005 0.0127 <0.00008 <0.001 <0.0003 <0.00001	<0.0005 <0.0002 <0.0008 <0.001 <0.0003 <0.00001	<0.005 0.127 <0.0008 <0.01 <0.003 <0.0001	<0.005 <0.002 <0.0008 <0.01 <0.003 <0.0001	0.5 20 0.04 0.5 2 0.01	2 100 1 1 10 50 0.2	25 300 5 70 100 2
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum	<0.0005 0.0127 <0.00008 <0.001 <0.0003 <0.0001 0.00683	<0.0005 <0.0002 <0.0008 <0.001 <0.0003 <0.00001 <0.0003	<0.005 0.127 <0.0008 <0.01 <0.003 <0.0001 0.0683	<0.005 <0.002 <0.0008 <0.01 <0.003 <0.0001 <0.003	0.5 20 0.04 0.5 2 0.01 0.5	2 100 1 10 50 0.2	25 300 5 70 100 2 30
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	<0.0005 0.0127 <0.00008 <0.001 <0.0003 <0.00001 0.00683 <0.0004	<0.0005 <0.0002 <0.0008 <0.001 <0.0003 <0.00001 <0.003 <0.0004	<0.005 0.127 <0.0008 <0.001 <0.003 <0.0001 0.0683 <0.004	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.004	0.5 20 0.04 0.5 2 0.01 0.5	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead	<0.0005 0.0127 <0.00008 <0.001 <0.0003 <0.00001 0.00683 <0.0004 0.000665	<0.0005 <0.0002 <0.0008 <0.001 <0.0003 <0.00001 <0.0003 <0.0004 <0.0002	<0.005 0.127 <0.0008 <0.01 <0.003 <0.0001 0.0683 <0.004 0.00665	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002	0.5 20 0.04 0.5 2 0.01 0.5 0.4	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony	<0.0005 0.0127 <0.00008 <0.0001 <0.0003 <0.00001 0.00683 <0.0004 0.000665 <0.0001	<0.0005 <0.0002 <0.00008 <0.0001 <0.0003 <0.00001 <0.0003 <0.0004 <0.0002 <0.0001	<0.005 0.127 <0.0008 <0.01 <0.003 <0.0001 0.0683 <0.004 0.00665 <0.01	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.001	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium	<0.0005 0.0127 <0.0008 <0.001 <0.0003 <0.0001 0.00683 <0.0004 0.000665 <0.001 <0.001	<0.0005 <0.0002 <0.00008 <0.0001 <0.0003 <0.00001 <0.0003 <0.0004 <0.0002 <0.0001 <0.0001	<0.005 0.127 <0.0008 <0.011 <0.003 <0.0001 0.0683 <0.004 0.00665 <0.01 <0.01	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.004 <0.002 <0.001 <0.001	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50 5
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc	<0.0005 0.0127 <0.00008 <0.001 <0.0003 <0.00001 0.00683 <0.0004 0.000665 <0.001 <0.001 0.00258	<0.0005 <0.0002 <0.00008 <0.0001 <0.0003 <0.00001 <0.0003 <0.0004 <0.0002 <0.0001 <0.0001 <0.0001	<0.005 0.127 <0.0008 <0.01 <0.003 <0.0001 0.0683 <0.004 0.00665 <0.01 <0.01 0.0258	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.001 <0.001 <0.001	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50	25 300 5 70 100 2 30 40 50 5 7
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	<0.0005 0.0127 <0.00008 <0.0001 <0.0003 <0.00001 0.00683 <0.0004 0.000665 <0.001 <0.001 <0.001 <0.00258 <2	<0.0005 <0.0002 <0.00008 <0.0001 <0.0003 <0.00001 <0.0003 <0.0004 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.0001 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.000	<0.005 0.127 <0.0008 <0.01 <0.003 <0.0001 0.0683 <0.004 0.00665 <0.01 <0.01 0.0258 <20	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	2 100 1 1 10 50 0.2 10 10 10 10 10 10 15 50 1500 15000	25 300 5 70 100 2 30 40 50 5 7 200
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	<0.0005 0.0127 <0.00008 <0.0001 <0.0003 <0.00001 0.00683 <0.0004 0.000665 <0.001 <0.001 0.00258 <2 0.771	<0.0005 <0.0002 <0.0008 <0.0001 <0.0003 <0.00001 <0.0003 <0.0004 <0.0002 <0.001 <0.001 <0.001 <0.001 <0.005	<0.005 0.127 <0.0008 <0.01 <0.003 <0.0001 0.0683 <0.004 0.00665 <0.01 <0.01 0.0258 <20 7.71	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.001 <0.001 <0.001 <0.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001 <5.001	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	2 100 1 10 50 0.2 10 10 0.7 0.5 50 15000 150	25 300 5 70 100 2 30 40 50 5 7 200 25000
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble)	<pre><0.0005</pre>	<0.0005 <0.0002 <0.0008 <0.0001 <0.0003 <0.00001 <0.0003 <0.0004 <0.0002 <0.001 <0.001 <0.001 <0.005 <0.001 <0.005 <0.001 <0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.005 0.127 <0.0008 <0.011 <0.003 <0.0001 0.0683 <0.004 0.00665 <0.01 <0.01 0.0258 <20 7.71 <20	<0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.001 <0.001 <0.001 <0.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001 <20.001	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000	2 100 1 10 50 0.2 10 10 10 10 10 150 150 150 20000	25 300 5 70 100 2 30 40 50 7 200 25000 50000

Leach Test Information

Date Prepared	22-May-2019
pH (pH Units)	6.82
Conductivity (µS/cm)	88.70
Temperature (°C)	20.40
Volume Leachant (Litres)	0.885

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

SDG: 190521-93 Location: Millers Glen - Phase 5 Client Reference: Order Number: 5599 46/A/19 Report Number: Superseded Report: 507840

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESU	JLTS					REF : BS	EN 12457
Client Reference			Site Location		Miller	s Glen - Phase	5
Mass Sample taken (kg)	0.105		Natural Moistur	e Content (%)	17.6		
Mass of dry sample (kg)	0.090		Dry Matter Con		85		
Particle Size <4mm	>95%		Dry Matter Con	terre (70)	00		
r article oize (4mm	2 30 70						
Case					Land	fill Waste Accep	
SDG	190521-93					Criteria Limits	
Lab Sample Number(s)	19996776						
Sampled Date	20-May-2019					Stable	
Customer Sample Ref.	CBR6				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non- Hazardous	Waste Landfi
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	0.663				3	5	6
Loss on Ignition (%)	4.11				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021 <1				1	-	-
/lineral Oil (mg/kg) PAH Sum of 17 (mg/kg)	-				500	-	-
H (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				_	_	_
(
	-				-	-	-
ANC to pH 4 (mol/kg) Eluate Analysis		LO:1 eluate (mg/l)	A2 10:1 cond	c ⁿ leached (mg/kg)	- Limit valu	- ues for compliance lea BS EN 12457-3 at L/S	ching test
ANC to pH 4 (mol/kg) Eluate Analysis	C ₂ Conc ⁿ in 1	Limit of Detection	Result	Limit of Detection	- Limit valı using	ues for compliance lea BS EN 12457-3 at L/S	ching test 10 l/kg
ANC to pH 4 (mol/kg) Eluate Analysis Arsenic	C2 Conc ⁿ in 1 Result 0.00096	Limit of Detection	Result 0.0096	Limit of Detection	Limit valuusing	ues for compliance lea BS EN 12457-3 at L/S	ching test 10 l/kg
Eluate Analysis Arsenic Barium	C2 Conc ⁿ in 1 Result 0.00096 0.0226	Limit of Detection	Result 0.0096 0.226	Limit of Detection	Limit valuusing	ues for compliance lea BS EN 12457-3 at L/S 2 100	25 300
Eluate Analysis Arsenic Barium Cadmium	Result 0.00096 0.0226 <0.00008	Limit of Detection <0.0005 <0.0002 <0.0008	Result 0.0096 0.226 <0.0008	Limit of Detection <0.005 <0.002 <0.0008	- Limit valuusing 0.5 20 0.04	ues for compliance lea BS EN 12457-3 at L/S 2 100	25 300 5
Eluate Analysis Arsenic Barium Cadmium Chromium	Result 0.00096 0.0226 <0.00008 <0.001	Limit of Detection <0.0005 <0.0002 <0.0008 <0.001	Result 0.0096 0.226 <0.0008 <0.01	Limit of Detection	- Limit valuusing 0.5 20 0.04 0.5	2 100 1	25 300 5
Eluate Analysis Arsenic Barium Cadmium Chromium Copper	Result 0.00096 0.0226 <0.0008 <0.001 0.00076	Limit of Detection <0.0005 <0.0002 <0.00008 <0.001 <0.0003	Result 0.0096 0.226 <0.0008 <0.01 0.0076	 Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003 	- Limit valuusing 0.5 20 0.04 0.5 2	2 100 1 10 50	25 300 5 70
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF)	Result 0.00096 0.0226 <0.00008 <0.001 0.00076 <0.00001	Limit of Detection <0.0005 <0.0002 <0.00008 <0.001 <0.0003 <0.00001	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001	 Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003 <0.0001 	0.5 20 0.04 0.5 2	2 100 1 10 50 0.2	25 300 5 70 100 2
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum	Result 0.00096 0.0226 <0.00008 <0.001 0.00076 <0.00001 0.00717	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717	Limit of Detection	Limit valuating 0.5 20 0.04 0.5 2 0.01 0.5	2 100 1 10 50 0.2 10	25 300 5 70 100 2 30
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	Result 0.00096 0.0226 <0.00008 <0.001 0.00076 <0.00001 0.00717 0.00165	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0001 <0.003 <0.004	Limit valuating 0.5 20 0.04 0.5 2 0.01 0.5 0.4	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Vickel	Result 0.00096 0.0226 <0.00008 <0.001 0.00076 <0.00001 0.00717 0.00165 <0.0002	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0001 <0.003 <0.0004 <0.002	- Limit valusing 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	2 100 1 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony	Result 0.00096 0.0226 <0.00008 <0.001 0.00076 <0.00001 0.00717 0.00165 <0.0002 <0.001	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.002 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0	- Limit valuusing 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	2 100 1 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium	Result 0.00096 0.0226 <0.00008 <0.001 0.00076 <0.00001 0.00717 0.00165 <0.0002 <0.0001 <0.0001	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01 <0.01	Limit of Detection	- Limit valuusing 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	2 100 1 10 50 0.2 10 10 10 0.7 0.5	25 300 5 70 100 2 30 40 50 5
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc	Result 0.00096 0.0226 <0.0008	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01 <0.01 0.0353	Limit of Detection	- Limit valuusing 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.6 0.1 4	2 100 1 10 50 0.2 10 10 10 0.7 0.5 50	25 300 5 70 100 2 30 40 50 5 7
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	Result 0.00096 0.0226 <0.0008	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01 <0.01 0.0353 28	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.004 <0.002 <0.011 <0.01 <0.011 <0.01 <0.011 <0.011 <200	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.1 4 800	2 100 1 10 50 0.2 10 10 10 10 50 50 50 15000	25 300 5 70 100 2 30 40 50 5 7 200 25000
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Mickel Lead Antimony Selenium Chloride Fluoride	Result 0.00096 0.0226 <0.00008 <0.0001 0.00076 <0.00001 0.00717 0.00165 <0.0002 <0.0001 <0.0001 20.00353 2.8 0.524	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01 <0.01 0.0353 28 5.24	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.004 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.6 0.1 4 800	2 100 1 10 50 0.2 10 10 10 0.7 0.5 50 15000	25 300 5 70 100 2 30 40 50 5 7 200 25000
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble)	Result 0.00096 0.0226 <0.0008	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01 <0.01 0.0353 28 5.24 342	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.004 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0		2 100 1 10 50 0.2 10 10 10 0.7 0.5 50 15000 150 20000	25 300 5 70 100 2 30 40 50 5 7 200 25000 50000
Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble) Fotal Dissolved Solids	Result 0.00096 0.0226 <0.00008	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01 <0.01 0.0353 28 5.24 342 1430	Limit of Detection		2 100 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50 5 7 200 25000 5000 100000
ANC to pH 4 (mol/kg)	Result 0.00096 0.0226 <0.0008	Limit of Detection	Result 0.0096 0.226 <0.0008 <0.01 0.0076 <0.0001 0.0717 0.0165 <0.002 <0.01 <0.01 0.0353 28 5.24 342	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.004 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <20 <1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0		2 100 1 10 50 0.2 10 10 10 0.7 0.5 50 15000 150 20000	25 300 5 70 100 2 30 40 50 5 7 200 25000 50000

Leach Test Information

Date Prepared	22-May-2019
pH (pH Units)	8.04
Conductivity (µS/cm)	189.00
Temperature (°C)	20.40
Volume Leachant (Litres)	0.884

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

SDG: 190521-93 Location: Millers Glen - Phase 5 Client Reference: Order Number: 5599 46/A/19 Report Number: Superseded Report: 507840

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RES	ULTS					REF : BS	EN 12457
Client Reference			Site Location		Miller	s Glen - Phase	5
Mass Sample taken (kg)	0.097		Natural Moistur	e Content (%)	6.72		
Mass of dry sample (kg)	0.090		Dry Matter Con		93.7		
Particle Size <4mm	>95%		Dry matter con	terre (70)	00.1		
Particle Size <4mm	>95 %						
Case					Land	fill Waste Accep	otance
SDG	190521-93					Criteria Limits	
Lab Sample Number(s)	19996778						
Sampled Date	20-May-2019					Stable	
Customer Sample Ref.	TP34				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.30 - 0.30				Landfill	in Non- Hazardous	Waste Landfi
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	0.534				3	5	6
Loss on Ignition (%)	1.86				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021				1	-	-
Mineral Oil (mg/kg)	<1 -				500	-	-
PAH Sum of 17 (mg/kg) oH (pH Units)	<u>-</u>				_	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in	10:1 eluate (mg/l)	A ₂ 10:1 cond	c ⁿ leached (mg/kg)		ues for compliance lea BS EN 12457-3 at L/S	_
Arsenic	Result <0.0005	Limit of Detection <0.0005	Result < 0.005	Limit of Detection <0.005	0.5	2	25
Barium	0.0339	<0.0003	0.339	<0.003	20	100	300
Cadmium	<0.0008	<0.0002	<0.0008	<0.002	0.04	1	5
Chromium	<0.001	<0.000	<0.000	<0.01	0.5	10	70
Copper	<0.001	<0.001	<0.003	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.0003	<0.0003	<0.003	<0.003	0.01	0.2	2
Molybdenum	<0.003	<0.0001	<0.001	<0.03	0.5	10	30
Vickel	0.00437	<0.003	0.0437	<0.004	0.4	10	40
_ead	0.000294	<0.0004	0.00294	<0.004	0.4	10	50
	<0.001	<0.002	<0.01	<0.002	0.06	0.7	5
Antimony	<0.001	<0.001	<0.01				7
Selenium Zinc	0.0296	<0.001		<0.01	0.1	0.5 50	200
Chloride	0.0296 <2	<0.001	0.296 <20	<0.01 <20	800	15000	25000
Fluoride	1.04	<0.5	10.4	<5	10	15000	500
	1.04	<0.5	13800	<100		20000	50000
Sulphate (soluble)	1510				1000		
Total Dissolved Solids	1510	<10	15100	<100	4000	60000	100000
		z0.040	1.0	-0.40	4		
Total Dissolved Solids Total Monohydric Phenols (W) Dissolved Organic Carbon	0.13 <3	<0.016 <3	1.3 <30	<0.16 <30	500	800	1000

Leach Test Information

Date Prepared	22-May-2019
pH (pH Units)	7.18
Conductivity (µS/cm)	2,020.00
Temperature (°C)	20.60
Volume Leachant (Litres)	0.894

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

SDG: 190521-93 Location: Millers Glen - Phase 5 Client Reference: Order Number: 5599 46/A/19 Report Number: Superseded Report: 507840

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESU	JLTS					REF: BS	EN 12457
Client Reference			Site Location		Miller	s Glen - Phase	5
Mass Sample taken (kg)	0.106		Natural Moistu	re Content (%)	17.6		
Mass of dry sample (kg)	0.090		Dry Matter Con		85		
Particle Size <4mm	>95%		Dry Matter Con	terre (70)	00		
raiticle Size \4iiiiii	79370						
Case					Land	fill Waste Acce	
SDG	190521-93					Criteria Limits	
Lab Sample Number(s)	19996779						
Sampled Date	20-May-2019					Stable Non-reactive	
Customer Sample Ref.	TP29				Inert Waste	Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non- Hazardous	Waste Landfill
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	0.466				3	5	6
Loss on Ignition (%)	2.73				-	-	10
Sum of BTEX (mg/kg)					-	-	-
Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg)	<0.021 <1				500	-	-
PAH Sum of 17 (mg/kg)	-				-	-	-
pH (pH Units)	-				-	-	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)					-	-	-
					Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
Eluate Analysis	C ₂ Conc ⁿ in :	LO:1 eluate (mg/l)	A 2 10:1 con	c ⁿ leached (mg/kg)			
	Result	Limit of Detection	Result	Limit of Detection	using	BS EN 12457-3 at L/S	10 l/kg
Arsenic	Result <0.0005	Limit of Detection <0.0005	Result <0.005	Limit of Detection <0.005	using 0.5	BS EN 12457-3 at L/S	10 l/kg 25
Arsenic Barium	Result <0.0005 0.0106	Limit of Detection	Result <0.005 0.106	Limit of Detection	0.5 20	2 100	25 300
Arsenic Barium Cadmium	Result <0.0005 0.0106 <0.00008	Limit of Detection <0.0005 <0.0002 <0.00008	Result <0.005 0.106 <0.0008	Limit of Detection	0.5 20 0.04	2 100 1	25 300 5
Arsenic Barium Cadmium Chromium	Result <0.0005 0.0106 <0.0008 <0.001	Limit of Detection <0.0005 <0.0002 <0.0008 <0.001	Result <0.005 0.106 <0.0008 <0.01	Limit of Detection <0.005 <0.002 <0.0008 <0.01	0.5 20 0.04 0.5	2 100 1	25 300 5 70
Arsenic Barium Cadmium Chromium Copper	Result <0.0005 0.0106 <0.0008 <0.001 <0.0003	Limit of Detection <0.0005 <0.0002 <0.00008 <0.001 <0.0003	Result <0.005 0.106 <0.0008 <0.001 <0.003	Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003	0.5 20 0.04 0.5 2	2 100 1 10 50	25 300 5 70
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF)	Result <0.0005 0.0106 <0.00008 <0.001 <0.0003 <0.00001	Limit of Detection <0.0005 <0.0002 <0.00008 <0.001 <0.0003 <0.00001	Result <0.005 0.106 <0.0008 <0.001 <0.003 <0.0001	Limit of Detection	0.5 20 0.04 0.5 2 0.01	2 100 1 10 50 0.2	25 300 5 70 100 2
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum	Result <0.0005 0.0106 <0.0008 <0.001 <0.0003 <0.0001 0.00552	Limit of Detection	Result <0.005 0.106 <0.0008 <0.001 <0.003 <0.0001 0.0552	Limit of Detection	0.5 20 0.04 0.5 2 0.01	2 100 1 10 50 0.2	25 300 5 70 100 2
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	Result <0.0005 0.0106 <0.0008 <0.001 <0.0003 <0.00001 0.00552 <0.0004	Limit of Detection	Result <0.005 0.106 <0.0008 <0.01 <0.003 <0.0001 0.0552 <0.004	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4	2 100 1 10 50 0.2 10 10	25 300 5 70 100 2 30 40
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	Result	Limit of Detection	Result <0.005 0.106 <0.0008 <0.001 <0.003 <0.0001 0.0552 <0.004 <0.002	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony	Result	Limit of Detection	Result <0.005 0.106 <0.0008 <0.001 <0.003 <0.0001 0.0552 <0.004 <0.002 <0.01	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.6	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium	Result	Limit of Detection	Result <0.005 0.106 <0.0008 <0.001 <0.003 <0.0001 0.0552 <0.004 <0.002 <0.01 <0.01	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.1	2 100 1 10 50 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10	25 300 5 70 100 2 30 40 50 5
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc	Result	Limit of Detection	Result <0.005 0.106 <0.0008 <0.001 <0.003 <0.0001 0.0552 <0.004 <0.002 <0.01 0.0372	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.1 4	2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50	25 300 5 70 100 2 30 40 50 5 7
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	Result	Limit of Detection	Result	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.1 4 800	2 100 1 100 50 0.2 10 10 0.7 0.5 50 15000	25 300 5 70 100 2 30 40 50 5 7 200 25000
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	Result	Limit of Detection	Result	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.004 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <20 <5	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.6 0.1 4 800	2 100 1 10 50 0.2 10 10 10 10 10 10 150 1500 150 150 150	25 300 5 70 100 2 30 40 50 5 7 200 25000 500
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble)	Result	Limit of Detection	Result	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.004 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <20 <5 <5 <20	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.6 0.1 4 800 10	2 100 1 10 50 0.2 10 10 10 10 10 150 150 150 20000	25 300 5 70 100 2 30 40 50 5 7 200 25000 50000
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble) Total Dissolved Solids	Result	Limit of Detection	Result	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000 4000	2 100 1 100 10 100 100 100 100 100 100 1	25 300 5 70 100 2 30 40 50 5 7 200 25000 500
Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble) Total Dissolved Solids Total Monohydric Phenols (W) Dissolved Organic Carbon	Result	Limit of Detection	Result	Limit of Detection <0.005 <0.002 <0.0008 <0.001 <0.003 <0.0001 <0.003 <0.0004 <0.002 <0.004 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <20 <5 <5 <20	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.6 0.1 4 800 10	2 100 1 10 50 0.2 10 10 10 10 10 150 150 150 20000	25 300 5 70 100 2 30 40 50 7 200 25000 50000

Leach Test Information

Date Prepared	22-May-2019
pH (pH Units)	8.32
Conductivity (µS/cm)	86.10
Temperature (°C)	20.20
Volume Leachant (Litres)	0.884

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

 SDG:
 190521-93
 Client Reference:
 5599
 Report Number:
 507840

 Location:
 Millers Glen - Phase 5
 Order Number:
 46/A/19
 Superseded Report:

Table of Results - Appendix

	Table of Results - Appendix				
Method No	Reference	Description			
PM001		Preparation of Samples for Metals Analysis			
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material			
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step			
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition			
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material			
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)			
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)			
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water			
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser			
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS			
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water			
TM132	In - house Method	ELTRA CS800 Operators Guide			
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser			
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS			
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils			
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID			
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES			
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry			
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers			
TM218	Shaker extraction - EPA method 3546.	The determination of PAH in soil samples by GC-MS			
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC			
TM410	Shaker extraction-In house coronene method	Determination of Coronene in soils by GCMS			

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden (Method codes TM) or ALS Life Sciences Ltd Aberdeen (Method codes S).

Validated

CERTIFICATE OF ANALYSIS

 SDG:
 190521-93

 Location:
 Millers Glen - Phase 5

Client Reference: Order Number: 5599 46/A/19 Report Number: Superseded Report:

507840

Test Completion Dates

				P : 2 4: 4 :	. = 3.00
Lab Sample No(s)	19996776	19996774	19996775	19996779	19996778
Customer Sample Ref.	CBR6	TP6	TP14	TP29	TP34
AGS Ref.					
Depth	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.30 - 0.30
Туре	Soil/Solid (S)				
Anions by Kone (w)	24-May-2019	24-May-2019	24-May-2019	24-May-2019	24-May-2019
Asbestos ID in Solid Samples		23-May-2019			
CEN 10:1 Leachate (1 Stage)	22-May-2019	22-May-2019	22-May-2019	22-May-2019	22-May-2019
CEN Readings	25-May-2019	25-May-2019	25-May-2019	25-May-2019	25-May-2019
Chromium III	25-May-2019	25-May-2019	25-May-2019	25-May-2019	25-May-2019
Coronene	28-May-2019	28-May-2019	28-May-2019	28-May-2019	28-May-2019
Dissolved Metals by ICP-MS	28-May-2019	28-May-2019	28-May-2019	28-May-2019	28-May-2019
Dissolved Organic/Inorganic Carbon	24-May-2019	24-May-2019	24-May-2019	24-May-2019	24-May-2019
EPH CWG (Aliphatic) GC (S)	28-May-2019	28-May-2019	24-May-2019	28-May-2019	28-May-2019
EPH CWG (Aromatic) GC (S)	28-May-2019	28-May-2019	24-May-2019	28-May-2019	28-May-2019
Fluoride	28-May-2019	28-May-2019	28-May-2019	28-May-2019	24-May-2019
GRO by GC-FID (S)	28-May-2019	29-May-2019	29-May-2019	28-May-2019	29-May-2019
Hexavalent Chromium (s)	24-May-2019	24-May-2019	24-May-2019	24-May-2019	24-May-2019
Loss on Ignition in soils	23-May-2019	28-May-2019	23-May-2019	23-May-2019	23-May-2019
Mercury Dissolved	24-May-2019	24-May-2019	24-May-2019	24-May-2019	24-May-2019
Metals in solid samples by OES	24-May-2019	23-May-2019	24-May-2019	24-May-2019	24-May-2019
Mineral Oil	28-May-2019	28-May-2019	28-May-2019	28-May-2019	28-May-2019
PAH by GCMS	29-May-2019	24-May-2019	24-May-2019	24-May-2019	29-May-2019
PCBs by GCMS	24-May-2019	24-May-2019	24-May-2019	24-May-2019	24-May-2019
Phenols by HPLC (W)	24-May-2019	24-May-2019	28-May-2019	24-May-2019	28-May-2019
Sample description	21-May-2019	21-May-2019	21-May-2019	21-May-2019	21-May-2019
Total Dissolved Solids on Leachates	24-May-2019	24-May-2019	24-May-2019	24-May-2019	24-May-2019
Total Organic Carbon	24-May-2019	24-May-2019	24-May-2019	28-May-2019	24-May-2019
TPH CWG GC (S)	28-May-2019	29-May-2019	29-May-2019	28-May-2019	29-May-2019
VOC MS (S)	28-May-2019	28-May-2019	28-May-2019	28-May-2019	29-May-2019

ALS

SDG: 190521-93 Location: Millers Glen - Phase 5 Client Reference: Order Number: 5599 46/A/19 Report Number: Superseded Report: 507840

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. Results relate only to the items tested
- 12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

- 21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
Ş	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or
•	samples

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbe stos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro di dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Waste Classification Report

Job name

5599

Description/Comments

Client: Gannon Homes Ltd Engineer: Waterman Moylan

Project

Millers Glen - Phase 5

Site

Swords, Co. Dublin

Related Documents

# Name	Description
1 190521-93.hwol	.hwol file used to create the Job

Waste Stream Template

Rilta Suite NEW

Classified by

Name: Stephen Letch Date: 05 Jun 2019 12:30 GMT Telephone: 353 1 6108 768 Company:

Site Investigations Ltd Carhugar, The Grange 12th Lock Road, Lucan

Dublin

Report

Created by: Stephen Letch

Created date: 05 Jun 2019 12:30 GMT

Job summary

	•				
#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	CBR6-200519-0.50-0.50		Non Hazardous		2
2	TP14-200519-0.50-0.50		Non Hazardous		5
3	TP29-200519-0.50-0.50		Non Hazardous		8
4	TP34-200519-0.30-0.30		Non Hazardous		11
5	TP6-200519-0.50-0.50		Non Hazardous		14

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	17
Appendix B: Rationale for selection of metal species	19
Appendix C: Version	19

Classification of sample: CBR6-200519-0.50-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:

CBR6-200519-0.50 Chapter:

Moisture content:

15% Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound (conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	TPH		5.78	mg/kg		4.913	mg/kg	0.000491 %	✓	
2	-		<mark>ly trioxide</mark> } 215-175-0	1309-64-4		1.88	mg/kg	1.197	1.913	mg/kg	0.000191 %	√	
3					1	15	mg/kg		12.75	mg/kg	0.00128 %	√	
4	4	Darrain (Darrain	oxide } 215-127-9	1304-28-5		151	mg/kg	1.117	143.304	mg/kg	0.0143 %	✓	
5	_	cadmium { <mark>cadmiuı</mark> 048-002-00-0	<mark>n oxide</mark> } 215-146-2	1306-19-0		1.93	mg/kg	1.142	1.874	mg/kg	0.000187 %	✓	
6	-		oxide; copper (I) oxi 215-270-7	de }		29.3	mg/kg	1.126	28.04	mg/kg	0.0028 %	✓	
7		lead { lead compospecified elsewhere			1	24.9	mg/kg		21.165	mg/kg	0.00212 %	√	
8	4	mercury { mercury	dichloride }	7487-94-7		<0.14	mg/kg	1.353	<0.189	mg/kg	<0.0000189 %		<lod< td=""></lod<>
9	-		ybdenum(VI) oxide 215-204-7	1313-27-5		3.37	mg/kg	1.5	4.297	mg/kg	0.00043 %	✓	
10	æ	nickel { nickel sulfa 028-009-00-5	te } 232-104-9	7786-81-4		48.3	mg/kg	2.637	108.249	mg/kg	0.0108 %	✓	
11	~	selenium { seleniur cadmium sulphose in this Annex }				<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
12	æ	zinc { <mark>zinc sulphate</mark> 030-006-00-9	} 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		86.4	mg/kg	2.469	181.345	mg/kg	0.0181 %	1	
13		chromium in chromoxide }		18.7	mg/kg	1.462	23.231	mg/kg	0.00232 %	✓			

Page 2 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

HazWasteOnline[™] Report created by Stephen Letch on 05 Jun 2019

	_								_	
#		Determinand CLP index number		User entered	data	Conv. Factor	Compound conc	Classification value	Applied	Conc. Not Used
		CLP index number	AS Number						Σ	
14	4	oxide }	romium(VI) 3-82-0	<0.6	mg/kg	1.923	<1.154 mg	/kg <0.000115 %		<lod< td=""></lod<>
		naphthalene	5-62-0							
15		601-052-00-2 202-049-5 91-20	0-3	<0.009	mg/kg		<0.009 mg	kg <0.0000009 %		<lod< td=""></lod<>
16	0	acenaphthylene 205-917-1 208-9		<0.012	mg/kg		<0.012 mg	/kg <0.0000012 %		<lod< td=""></lod<>
17	0	acenaphthene 201-469-6 83-3;		<0.008	mg/kg		<0.008 mg	/kg <0.0000008 %		<lod< td=""></lod<>
		fluorene	2-5				<u> </u>			
18		201-695-5 86-73	3-7	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		<lod< td=""></lod<>
19	9	phenanthrene 201-581-5 85-0		<0.015	mg/kg		<0.015 mg	/kg <0.0000015 %		<lod< td=""></lod<>
20	0	anthracene 204-371-1 120-		<0.016	mg/kg		<0.016 mg	/kg <0.0000016 %		<lod< td=""></lod<>
		fluoranthene	14-11							
21		205-912-4 206-4	44-0	<0.017	mg/kg		<0.017 mg	kg <0.0000017 %		<lod< td=""></lod<>
22	0	pyrene	00-0	<0.015	mg/kg		<0.015 mg	/kg <0.0000015 %		<lod< td=""></lod<>
		benzo[a]anthracene			mg/kg					
23		601-033-00-9 200-280-6 56-59	5-3	<0.014			<0.014 mg	kg <0.0000014 %		<lod< td=""></lod<>
24		chrysene		<0.01	malka		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
24		601-048-00-0 205-923-4 218-0	01-9	<0.01	mg/kg		<0.01 mg	kg <0.000001 %		\ LOD
25		benzo[b]fluoranthene		<0.015	mg/kg		<0.015 mg	/kg <0.0000015 %		<lod< td=""></lod<>
		601-034-00-4 205-911-9 205-9	99-2	-0.010				1.00000010 70		-205
26		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-0	08-9	<0.014	mg/kg		<0.014 mg	/kg <0.0000014 %		<lod< td=""></lod<>
27		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3	2-8	<0.015	mg/kg		<0.015 mg	/kg <0.0000015 %		<lod< td=""></lod<>
28	0	indeno[123-cd]pyrene 193-4	39-5	<0.018	mg/kg		<0.018 mg	/kg <0.0000018 %		<lod< td=""></lod<>
		dibenz[a,h]anthracene								
29		601-041-00-2 200-181-8 53-70	0-3	<0.023	mg/kg		<0.023 mg	kg <0.0000023 %		<lod< td=""></lod<>
30	0	benzo[ghi]perylene		<0.024	mg/kg		<0.024 mg	/kg <0.0000024 %		<lod< td=""></lod<>
<u></u>			24-2	3.021				0.00002170		
31	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336	6-36-3	<0.021	mg/kg		<0.021 mg	/kg <0.0000021 %		<lod< td=""></lod<>
32		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.01	mg/kg		<0.01 mg	/kg <0.000001 %		<lod< td=""></lod<>
33		benzene	1-04-4	<0.009	mg/kg		<0.009 mg	/kg <0.0000009 %		<lod< td=""></lod<>
-		601-020-00-8 200-753-7 71-4:	3-2							
34			88-3	<0.007	mg/kg		<0.007 mg	/kg <0.0000007 %		<lod< td=""></lod<>
35	0	ethylbenzene 601-023-00-4 202-849-4 100-4	41-4	<0.004	mg/kg		<0.004 mg	/kg <0.0000004 %		<lod< td=""></lod<>
36	0	coronene 205-881-7 191-(.07-1	<0.2	mg/kg		<0.2 mg	/kg <0.00002 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xyle								
37		601-022-00-9 202-422-2 [1] 95-4 203-396-5 [2] 106-4 203-576-3 [3] 108-3	7-6 [1] 42-3 [2] 38-3 [3] 0-20-7 [4]	<0.02	mg/kg		<0.02 mg	/kg <0.000002 %		<lod< td=""></lod<>
		<u> </u> <u> </u>	J-2U-1 [4]				To	tal: 0.0535 %		
								0.0000 /0		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00049%)

Page 4 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

Classification of sample: TP14-200519-0.50-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: TP14-200519-0.50-0.50 Chapter:

Moisture content:

14% Entry: (wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	TPH		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
2	-	antimony { antimon 051-005-00-X	<mark>y trioxide</mark> } 215-175-0	1309-64-4		1.86	mg/kg	1.197	1.915	mg/kg	0.000191 %	✓	
3		arsenic { arsenic those specified else			1	13	mg/kg		11.18	mg/kg	0.00112 %	✓	
4						318	mg/kg	1.117	305.342	mg/kg	0.0305 %	√	
5	_	cadmium { <mark>cadmiun</mark> 048-002-00-0	•	1306-19-0	-	1.52	mg/kg	1.142	1.493	mg/kg	0.000149 %	✓	
6	_	copper { dicopper o		de } 1317-39-1		30	mg/kg	1.126	29.048	mg/kg	0.0029 %	✓	
7	4	lead { lead comp specified elsewhere			1	19.6	mg/kg		16.856	mg/kg	0.00169 %	√	
8	_	mercury { mercury (dichloride }	7487-94-7		<0.14	mg/kg	1.353	<0.189	mg/kg	<0.0000189 %		<lod< td=""></lod<>
9	-	molybdenum { moly		1313-27-5		5.36	mg/kg	1.5	6.915	mg/kg	0.000692 %	✓	
10		nickel { nickel sulfat 028-009-00-5		7786-81-4		37.6	mg/kg	2.637	85.26	mg/kg	0.00853 %	✓	
11	•	selenium { selenium cadmium sulphosel in this Annex }				<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
12			231-793-3 [1]	7446-19-7 [1] 7733-02-0 [2]		64.7	mg/kg	2.469	137.397	mg/kg	0.0137 %	√	
13		chromium in chromioxide }		11.9	mg/kg	1.462	14.958	mg/kg	0.0015 %	√			

HazWasteOnline[™] Report created by Stephen Letch on 05 Jun 2019

					Т							Applied	
#	Determinand CLP index number EC Number CAS Number		CLP Note	User entered	l data	Conv. Factor	Compound conc.		Classification value		Conc. Not Used		
		CLP index number	EC Number	CAS Number	딩							MC	
14	4	chromium in chrom oxide }	ium(VI) compounds	s { chromium(VI)		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0								Ш	
15		naphthalene				<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
			202-049-5	91-20-3	-							Ш	
16	0	acenaphthylene	205-917-1	208-96-8	-	<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
	_	acenaphthene	203-917-1	200-90-0	+							Н	
17	0	·	201-469-6	83-32-9	-	<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
-	0	fluorene		00 02 0									
18	•		201-695-5	86-73-7	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
40	0	phenanthrene				10.045			10.045	/	*O 000004F 0/		4LOD
19			201-581-5	85-01-8	1	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	Ш	<lod< td=""></lod<>
20	0	anthracene				<0.016	mg/kg		<0.016	ma/ka	<0.0000016 %		<lod< td=""></lod<>
20			204-371-1	120-12-7		<0.010	ilig/kg		<0.010	IIIg/kg	~0.0000010 <i>7</i> 0		\LOD
21	0	fluoranthene				<0.017	mg/kg		<0.017	ma/ka	<0.0000017 %		<lod< td=""></lod<>
			205-912-4	206-44-0	1								
22	Θ	pyrene				<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
			204-927-3	129-00-0	-							Н	
23		benzo[a]anthracene		J=0.==0	4	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
\vdash			200-280-6	56-55-3	+							Н	
24		chrysene	205 022 4	049.04.0	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-923-4	218-01-9	+							Н	
25		benzo[b]fluoranthene 601-034-00-4				<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		benzo[k]fluoranthene											
26		601-036-00-5	+	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>		
07		benzo[a]pyrene; benzo[def]chrysene				10.045			10.045	/	*O 000004F 0/		4LOD
27		601-032-00-3	1	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %	Ш	<lod< td=""></lod<>		
28	0	indeno[123-cd]pyre	ne			<0.018	mg/kg		<0.018	ma/ka	<0.0000018 %		<lod< td=""></lod<>
			205-893-2	193-39-5		40.010			-0.010	mg/kg			LOD
29		dibenz[a,h]anthrace				<0.023	mg/kg		<0.023	ma/ka	<0.0000023 %	Ш	<lod< td=""></lod<>
			200-181-8	53-70-3	1								
30	Θ	benzo[ghi]perylene				<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
			205-883-8	191-24-2	-							Н	
31	0	polychlorobiphenyls	·	4000 00 0		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
\vdash			215-648-1	1336-36-3	+							Н	
32		tert-butyl methyl eth 2-methoxy-2-methy				<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	-		59			9/119			
22		benzene			İ	<0.000	ma/ka		<0.000	ma/ka	<0.0000009 %		<1.0D
33		601-020-00-8	200-753-7	71-43-2	1	<0.009	mg/kg		<0.009	mg/kg	~0.0000009 %		<lod< td=""></lod<>
34		toluene				0.0142	mg/kg		0.0122	mg/kg	0.00000122 %	√	
		601-021-00-3	203-625-9	108-88-3	1	0.0142	9/119		0.0122	9,119	J.555555122 /0	*	
35	0	ethylbenzene				<0.004	mg/kg		<0.004	mg/ka	<0.0000004 %		<lod< td=""></lod<>
L			202-849-4	100-41-4	1		J. 3			J. 3		Ш	-
36	0	coronene				<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
\vdash		<u> </u>	205-881-7	191-07-1	╀							H	
		o-xylene; [1] p-xyle											
37			202-422-2 [1] 203-396-5 [2]	95-47-6 [1] 106-42-3 [2]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3]			, ,						
			215-535-7 [4]	1330-20-7 [4]								Ш	
										Total:	0.0615 %	L	

Page 6 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 1.22e-06%)

Classification of sample: TP29-200519-0.50-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
TP29-200519-0.50-0.50 Chapter:
Moisture content:
15% Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17.05.04 (Soil and stones other than those mentioned in 17.05.

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	er C	OLT NOIG	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group			<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
2	4	antimony { antimony trioxide } 051-005-00-X			2 mg/kg	1.197	2.035 mg/kg	0.000204 %	✓	
3	4	arsenic { arsenic compounds, with the exception of those specified elsewhere in this Annex }		1	13.9 mg/kg		11.815 mg/kg	0.00118 %	✓	
4	æ å	barium { • barium oxide }			84 mg/kg	1.117	79.719 mg/kg	0.00797 %	√	
5	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0			1.33 mg/kg	1.142	1.291 mg/kg	0.000129 %	✓	
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1			31.3 mg/kg	1.126	29.954 mg/kg	0.003 %	√	
7	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }		1	19.6 mg/kg		16.66 mg/kg	0.00167 %	√	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			<0.14 mg/kg	1.353	<0.189 mg/kg	<0.0000189 %		<lod< td=""></lod<>
9	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313-27-5			3.11 mg/kg	1.5	3.966 mg/kg	0.000397 %	✓	
10	4	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		Ì	38.4 mg/kg	2.637	86.061 mg/kg	0.00861 %	✓	
11	æ å	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewher in this Annex }			<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
12	_	034-002-00-8 zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]			68.9 mg/kg	2.469	144.614 mg/kg	0.0145 %	√	
13	4	chromium in chromium(III) compounds { Chromium oxide }	(III)		12 mg/kg	1.462	14.908 mg/kg	0.00149 %	√	

Page 8 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

HazWasteOnline[™] Report created by Stephen Letch on 05 Jun 2019

_												
#		Determinand CAC Number	P Note	User entered da	ata	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used	
		CLP index number	CLP							MC		
14	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.6 m	ng/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>	
		024-001-00-0 215-607-8 1333-82-0					<u> </u>			\dashv		
15		naphthalene 202-049-5 91-20-3		<0.009 m	ng/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>	
16	0	acenaphthylene 205-917-1 208-96-8	-	<0.012 m	ng/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>	
17	0	acenaphthene 201-469-6 83-32-9		<0.008 m	ng/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>	
10	0	fluorene	T	-0.04			-0.04	,,	.0.000004.0/		1.00	
18		201-695-5 86-73-7	1	<0.01 m	ng/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>	
19	0	phenanthrene 201-581-5 85-01-8		<0.015 m	ng/kg		<0.015	mg/kg	<0.0000015 %	Ì	<lod< td=""></lod<>	
20	0	anthracene		<0.016 m	ng/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>	
21	0	fluoranthene 205-912-4 206-44-0		<0.017 m	ng/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>	
22	0	pyrene		<0.015 m	ng/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>	
23		benzo[a]anthracene 601-033-00-9 200-280-6		<0.014 m	ng/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>	
-		chrysene	+				<u> </u>			\dashv		
24		601-048-00-0 205-923-4 218-01-9	-	<0.01 m	ng/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>	
25		benzo[b]fluoranthene		<0.015 m	ng/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>	
_		601-034-00-4 205-911-9 205-99-2 benzo[k]fluoranthene					<u> </u>			\dashv		
26		601-036-00-5 205-916-6 207-08-9		<0.014 m	ng/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>	
27		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		<0.015 m	ng/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>	
28	0	indeno[123-cd]pyrene 193-39-5	-	<0.018 m	ng/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>	
29		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.023 m	ng/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>	
30	0	benzo[ghi]perylene 191-24-2		<0.024 m	ng/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>	
31	0	polychlorobiphenyls; PCB 602-039-00-4	+	<0.021 m	ng/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>	
32		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.01 m	ng/kg		<0.01	mg/ka	<0.000001 %		<lod< td=""></lod<>	
		603-181-00-X 216-653-1 1634-04-4 benzene	+									
33	L	601-020-00-8 200-753-7 71-43-2		<0.009 m	ng/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>	
34		toluene 601-021-00-3 203-625-9 108-88-3		0.0105 m	ng/kg		0.0089	mg/kg	0.000000893 %	√		
35	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<0.004 m	ng/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>	
36	0	coronene 205-881-7 191-07-1	+	<0.2 m	ng/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>	
37		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4] 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<0.02 m	ng/kg		<0.02	mg/kg	<0.000002 % 0.0396 %		<lod< td=""></lod<>	
								iotai:	U.U390 %			

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 8.93e-07%)

Page 10 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

Classification of sample: TP34-200519-0.30-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code: TP34-200519-0.30-0.30 Chapter:

Moisture content:

6.3% Entry: (wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 6.3% Wet Weight Moisture Correction applied (MC)

TPH (C6 to C40) po	etroleum aroun		CLP Note		d data	Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
	ou oloum group	ТРН	Ĭ	4.15	mg/kg		3.889	mg/kg	0.000389 %	✓	
, ,		1309-64-4		2.14	mg/kg	1.197	2.4	mg/kg	0.00024 %	✓	
			1	43.9	mg/kg		41.134	mg/kg	0.00411 %	√	
Janan (Janan	,	1304-28-5		122	mg/kg	1.117	127.632	mg/kg	0.0128 %	✓	
,	,	1306-19-0		0.222	mg/kg	1.142	0.238	mg/kg	0.0000238 %	✓	
		•		12.9	mg/kg	1.126	13.609	mg/kg	0.00136 %	✓	
specified elsewhere			1	19.3	mg/kg		18.084	mg/kg	0.00181 %	√	
	•	7487-94-7		<0.14	mg/kg	1.353	<0.189	mg/kg	<0.0000189 %		<lod< td=""></lod<>
, ,	. , ,			0.422	mg/kg	1.5	0.593	mg/kg	0.0000593 %	✓	
	-	7786-81-4		31.8	mg/kg	2.637	78.564	mg/kg	0.00786 %	✓	
cadmium sulphose in this Annex }				<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
zinc { <mark>zinc sulphate</mark> 030-006-00-9	231-793-3 [1]	7446-19-7 [1] 7733-02-0 [2]		62.6	mg/kg	2.469	144.84	mg/kg	0.0145 %	√	
oxide }				<0.9	mg/kg	1.462	<1.315	mg/kg	<0.000132 %		<lod< td=""></lod<>
	os1-005-00-X arsenic { arsenic those specified else os	051-005-00-X 215-175-0 arsenic {	1309-64-4 arsenic 215-175-0 1309-64-4 arsenic 3 arsenic compounds, with the exception of those specified elsewhere in this Annex 033-002-00-5	1051-005-00-X 215-175-0 1309-64-4 arsenic {	1	051-005-00-X 215-175-0 1309-64-4 2.14 mg/kg arsenic { arsenic compounds, with the exception of those specified elsewhere in this Annex } 1 43.9 mg/kg 033-002-00-5 122 mg/kg 215-127-9 1304-28-5 122 mg/kg 215-127-9 1304-28-5 122 mg/kg 2048-002-00-0 215-146-2 1306-19-0 12.9 mg/kg 209-002-00-X 215-270-7 1317-39-1 12.9 mg/kg 209-002-00-X 215-270-7 1317-39-1 12.9 mg/kg 13.3 mg/kg 1	051-005-00-X 215-175-0 1309-64-4 2.14 mg/kg 1.197 051-005-00-X 215-175-0 1309-64-4 3.9 mg/kg 1.197 033-002-00-5	D51-005-00-X Z15-175-0 1309-64-4 Z.14 mg/kg 1.19/ Z.4 Img/kg I.19/ Z.4 Img/kg I.19/ Z.4 Img/kg I.19/ Z.2 Img/kg I.19/ Z.2 Img/kg I.19/ Z.2 Img/kg I.19/ Z.4 Img/kg I.19/ Z.2 Img/kg Z.5 Img	051-005-00-X 215-175-0 1309-64-4 2.14 mg/kg 1.197 2.4 mg/kg 1.197 2.4 mg/kg arsenic { arsenic compounds, with the exception of those specified elsewhere in this Annex } 1	D51-005-00-X Z15-175-0	D51-005-00-X Z15-175-0 1309-64-4 Z-14 mg/kg D.00024 Z-15 D.00024 Z-15 D.00024 D.00024

HazWasteOnline™ Report created by Stephen Letch on 05 Jun 2019

#										
	Determinand CLP index number		atoN o	alon	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
	1	CLP index number	CAS Number	5					MC	
14	•	chromium in chromium(VI) compounds { <mark>c</mark> oxide }	chromium(VI)		<0.6 mg/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< td=""></lod<>
	-		33-82-0	_						
15		naphthalene			<0.009 mg/kg		<0.009 mg/kg	<0.0000009 %	Ш	<lod< td=""></lod<>
	6	601-052-00-2 202-049-5 91-	-20-3	_						
16		acenaphthylene 205-917-1 208	8-96-8		<0.012 mg/kg		<0.012 mg/kg	<0.0000012 %		<lod< td=""></lod<>
17		acenaphthene			<0.008 mg/kg		<0.008 mg/kg	<0.0000008 %		<lod< td=""></lod<>
		201-469-6 83-	-32-9		-0.000 mg/kg		-0.000 mg/kg	-0.0000000 70		-205
18		fluorene			<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< td=""></lod<>
10	ŀ	201-695-5 86-	-73-7		<0.01 mg/kg		<0.01 111g/kg	<0.000001 76		\LOD
19		phenanthrene 201-581-5 85-	-01-8		<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %		<lod< td=""></lod<>
20		anthracene 204-371-1 120	0-12-7		<0.016 mg/kg		<0.016 mg/kg	<0.0000016 %		<lod< td=""></lod<>
		fluoranthene		+						
21 "	' -		6-44-0		<0.017 mg/kg		<0.017 mg/kg	<0.0000017 %	Ш	<lod< td=""></lod<>
	+	pyrene	0-44-0	+						
22	' -	· ·	9-00-0		<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %	Ш	<lod< td=""></lod<>
	+		9-00-0	+					Н	
23		benzo[a]anthracene	FF 0		<0.014 mg/kg		<0.014 mg/kg	<0.0000014 %	Ш	<lod< td=""></lod<>
	-		-55-3	-						
24		chrysene	0.04.0		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %	Ш	<lod< td=""></lod<>
	-		8-01-9	-					Н	
25		benzo[b]fluoranthene			<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %	Ш	<lod< td=""></lod<>
	\rightarrow		5-99-2	_					Н	
26		benzo[k]fluoranthene 501-036-00-5 205-916-6 20	7-08-9		<0.014 mg/kg		<0.014 mg/kg	<0.0000014 %		<lod< td=""></lod<>
27		benzo[a]pyrene; benzo[def]chrysene			<0.015 mg/kg		<0.015 mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	6	601-032-00-3 200-028-5 50-	-32-8		<0.015 mg/kg		<0.015 Hig/kg	<0.0000015 %		\LOD
28		indeno[123-cd]pyrene			<0.018 mg/kg		<0.018 mg/kg	<0.0000018 %		<lod< td=""></lod<>
20	ŀ	205-893-2 193	3-39-5		<0.018 mg/kg		<0.018 mg/kg	<0.0000016 %	Ш	<lod< td=""></lod<>
20	Ì	dibenz[a,h]anthracene			10.000		<0.000 maller	.0.0000000.0/		4LOD
29	6	501-041-00-2 200-181-8 53-	-70-3		<0.023 mg/kg		<0.023 mg/kg	<0.0000023 %	Ш	<lod< td=""></lod<>
20 0		benzo[ghi]perylene			0.004 "		0.004 "	2 2222224 2/		
30	-		1-24-2		<0.024 mg/kg		<0.024 mg/kg	<0.0000024 %		<lod< td=""></lod<>
24 @	1	polychlorobiphenyls; PCB		7						
31			36-36-3		<0.021 mg/kg		<0.021 mg/kg	<0.0000021 %		<lod< td=""></lod<>
32	Ť.	tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane	00 0		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
	6	603-181-00-X 216-653-1 163	34-04-4							
20	1	benzene		1	10.00 "		10.00 "	*0.000000.01		4.00
33	L		-43-2		<0.09 mg/kg		<0.09 mg/kg	<0.000009 %		<lod< td=""></lod<>
24	-	toluene		7	.0.07 "		.0.07 "	-0.00007.01		.1.65
34			8-88-3		<0.07 mg/kg		<0.07 mg/kg	<0.000007 %		<lod< td=""></lod<>
	-	ethylbenzene			0.04		204	0.00002:01		
35			0-41-4		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
26 @	1	coronene		1						
36	1		1-07-1		<0.2 mg/kg		<0.2 mg/kg	<0.00002 %		<lod< td=""></lod<>
	+	o-xylene; [1] p-xylene; [2] m-xylene; [3] xy		+						
	L		-47-6 [1]							
37		203-396-5 [2] 100 203-576-3 [3] 100	6-42-3 [2] 8-38-3 [3]		<0.2 mg/kg		<0.2 mg/kg	<0.00002 %		<lod< td=""></lod<>
		215-535-7 [4] 13:	30-20-7 [4]						Ш	
							Total:	0.0437 %	L	

Page 12 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00038%)

Classification of sample: TP6-200519-0.50-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: LoW Code:
TP6-200519-0.50-0.50 Chapter:
Moisture content:
10% Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17.05.04 (Soil and stones other than those mentioned in 17.05.

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 10% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered d	ata	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<0.1 m	ng/kg		<0.1 mg/	kg <0.00001 %		<lod< td=""></lod<>
2	4	antimony { antimony trioxide } 051-005-00-X		1.73 m	ng/kg	1.197	1.864 mg	kg 0.000186 %	✓	
3	4	arsenic { arsenic compounds, with the exception of those specified elsewhere in this Annex }	1	12.7 m	ng/kg		11.43 mg	kg 0.00114 %	√	
4	4			137 m	ng/kg	1.117	137.665 mg	kg 0.0138 %	✓	
5	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		1.27 m	ng/kg	1.142	1.306 mg	kg 0.000131 %	✓	
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		28.1 m	ng/kg	1.126	28.474 mg	kg 0.00285 %	√	
7	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	20.6 m	ng/kg		18.54 mg	kg 0.00185 %	√	
8	4			<0.14 m	ng/kg	1.353	<0.189 mg	kg <0.0000189 %		<lod< td=""></lod<>
9	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9		3.52 m	ng/kg	1.5	4.753 mg	kg 0.000475 %	√	
10	-	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		36.2 m	ng/kg	2.637	85.903 mg	kg 0.00859 %	√	
11		selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 m	ng/kg	2.554	<2.554 mg.	kg <0.000255 %		<lod< td=""></lod<>
12	æ.	034-002-00-8 zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 231-793-3 [2] 7733-02-0 [2]		72.7 m	ng/kg	2.469	161.566 mg	kg 0.0162 %	√	
13	4	chromium in chromium(III) compounds {)	9.28 m	ng/kg	1.462	12.207 mg	kg 0.00122 %	√	

Page 14 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

HazWasteOnline[™] Report created by Stephen Letch on 05 Jun 2019

_					_			1 1					
#			terminand		CLP Note	User entered	data	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC	Number	CAS Number	S							N N	
14	4	chromium in chromium(VI oxide } 024-001-00-0 215-60		1333-82-0		<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		naphthalene	01-0	1333-02-0	+							Н	
15		601-052-00-2 202-04	19-5	91-20-3	+	<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
		acenaphthylene	10 0	01200	+							Н	
16		205-91	17-1	208-96-8	\dashv	<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
47	0	acenaphthene		l.		-0.000			-0.000		-0.0000000.0/		.1.00
17		201-46	69-6	83-32-9	1	<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
18	0	fluorene		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>		
10		201-69	95-5	86-73-7		\\0.01	ilig/kg		~0.01	ilig/kg	<0.000001 78		\LOD
19	0	phenanthrene				<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		201-58	31-5	85-01-8		-0.010					30.0000010 70		
20	0	anthracene				<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
		204-37	71-1	120-12-7	1	-0.010 mg/kg						Ш	
21	0	fluoranthene			<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>	
		205-91	12-4	206-44-0	1							Ш	
22	0	pyrene		129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		204-92	_							Ш			
23		benzo[a]anthracene	_	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>		
-		601-033-00-9 200-28	+							Н			
24		chrysene	20. 4	0.40.04.0	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-048-00-0 205-92	23-4	218-01-9	+							Н	
25		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		4	<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>	
		benzo[k]fluoranthene	11-9	205-99-2	+							Н	
26			16-6	207-08-9	4	<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		601-036-00-5									Н		
27		601-032-00-3 200-028-5 50-32-8			<0.015 m	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>	
		indeno[123-cd]pyrene		00 02 0								Н	
28	Ĭ	205-893-2 193-39-5			┨	<0.018	mg/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
20		dibenz[a,h]anthracene				10,000			10,000		10.0000000.00	П	41.00
29		601-041-00-2 200-18	31-8	53-70-3	┪	<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
20	0	benzo[ghi]perylene				-0.024	no ar/1 car		-0.001	no ar/1 car	<0.0000004.0/		<1.0D
30		205-88	33-8	191-24-2	1	<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
31	0	polychlorobiphenyls; PCB	}			<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %	\Box	<lod< td=""></lod<>
		602-039-00-4 215-64	18-1	1336-36-3		-0.021	mg/kg		-0.021	mg/kg	3.0000021 70	Ш	1.00
		tert-butyl methyl ether; M7											
32		2-methoxy-2-methylpropa		1004 04 4	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		603-181-00-X 216-65)3-1	1634-04-4	+							Н	
33		benzene	-0.7	74 42 0	4	<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
		601-020-00-8 200-75 toluene)J-1	71-43-2	+							Н	
34		601-021-00-3 203-62	25-9	108-88-3	-	0.0104	mg/kg		0.0093	mg/kg	0.000000936 %	✓	
	_	ethylbenzene	-0-0	100-00-0	+							Н	
35	9	601-023-00-4 202-84	19-4	100-41-4	-	<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
-	6	coronene	1	1.00 11 1	+							Н	
36	-	205-88	31-7	191-07-1	\dashv	<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		o-xylene; [1] p-xylene; [2]			\top							Н	
1.				95-47-6 [1]	\dashv								
37		203-39	96-5 [2]	106-42-3 [2]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			76-3 [3] 35-7 [4]	108-38-3 [3] 1330-20-7 [4]									
		¥ 10-00	[±]	1000-20-7 [4]						Total:	0.0468 %	Н	
												Щ.	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 9.36e-07%)

Page 16 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304,

Flam. Liq. 3 H226

arsenic compounds, with the exception of those specified elsewhere in this Annex

CLP index number: 033-002-00-5

Description/Comments: Worst Case: IARC considers arsenic compounds Group 1; Carcinogenic to humans Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

• barium oxide (EC Number: 215-127-9, CAS Number: 1304-28-5)

Conversion factor: 1 117

Description/Comments: Data from C&L Inventory Database; No entries in Registered Substances Database, IARC or Pesticide

Properties Database

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=88825&HarmOnly=no?fc=true&lang=en

Data source date: 02 Jun 2014

Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Corr. 1A H314, Acute Tox. 3 H301, Acute Tox. 4

H302, Acute Tox. 4 H332

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 1; Carcinogenic to humans; Lead REACH Consortium

considers some lead compounds Carcinogenic category 1A

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

* chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Repr. 1B H360FD , Skin Sens. 1 H317 , Resp. Sens. 1 H334 ,

Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Skin\ Irrit.\ 2\ H315\ ,\ STOT\ SE\ 3\ H335\ ,\ Eye\ Irrit.\ 2\ H319\ ,\ Acute\ Tox.\ 1\ H310\ ,\ Acute\ Tox.\ 1\ H330\ ,\ Acute\ Tox.\ 4\ H302\ ,$

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 2 H411 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

www.hazwasteonline.com AJAAJ-XCRQW-V5W5W Page 17 of 20

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3

H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye

Irrit. 2 H319

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

29 Sep 2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

oronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic. Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx? SubstanceID=17010& HarmOnly=no? fc=true& lang=ender approximation of the control of t

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2 H371

Page 18 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario

arsenic {arsenic compounds, with the exception of those specified elsewhere in this Annex}

Chromium VII at limits of detection. Arsenic compounds used as the next most hazardous species. No chromate present.

barium {barium oxide}

Chromium VII at limits of detection. Barium compounds used as the next most hazardous species. No chromate present.

cadmium {cadmium oxide}

Chromium VII at limits of detection. Cadmium compounds used as the next most hazardous species. No chromate present.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Chromium VII at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel sulfate}

Chromium VII at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc sulphate}

Chromium VII at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018

HazWasteOnline Classification Engine Version: 2019.152.3882.7895 (01 Jun 2019)

HazWasteOnline Database: 2019.152.3882.7895 (01 Jun 2019)

www.hazwasteonline.com AJAAJ-XCRQW-V5W5W Page 19 of 20

Report created by Stephen Letch on 05 Jun 2019

This classification utilises the following guidance and legislation:

WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011 **3rd ATP** - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

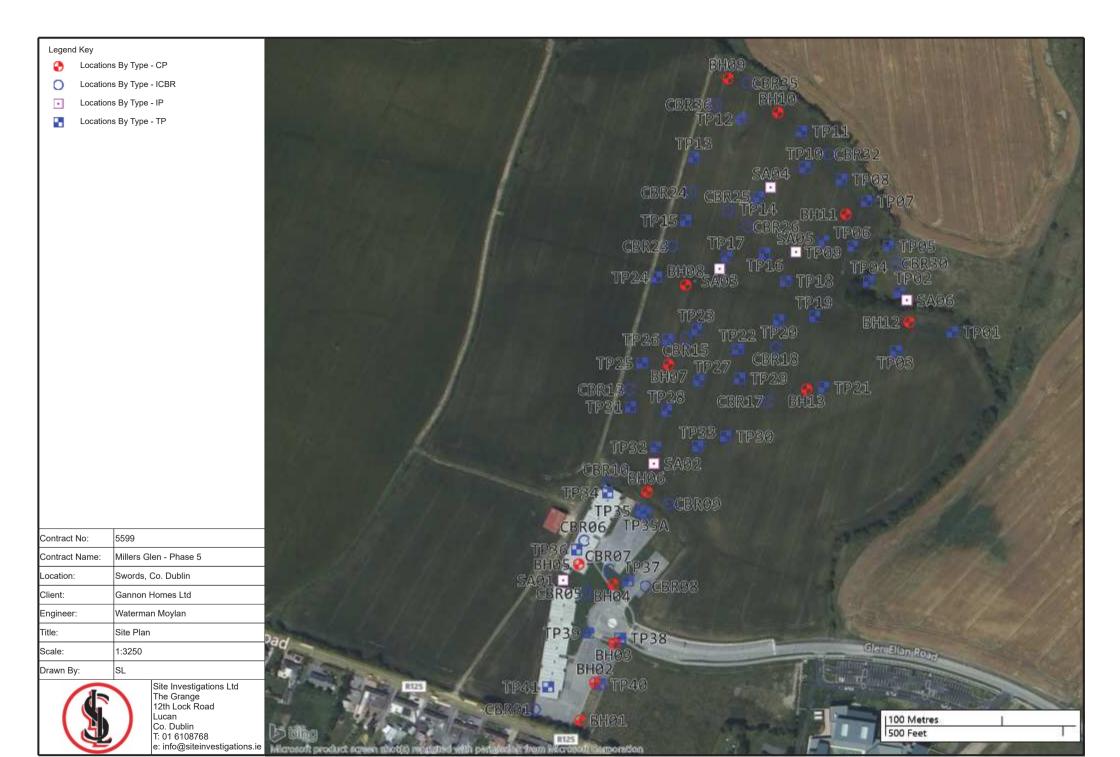
10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

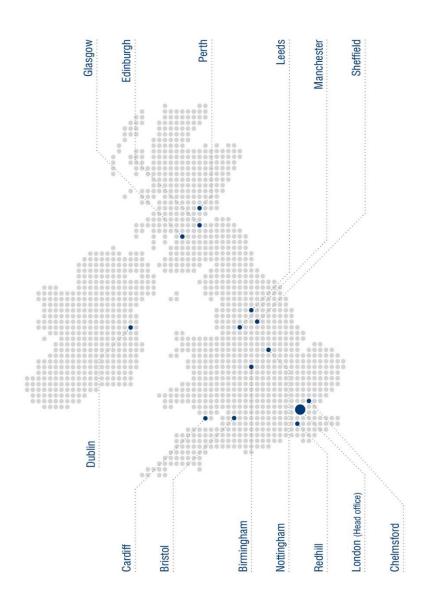
13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010


Page 20 of 20 AJAAJ-XCRQW-V5W5W www.hazwasteonline.com Appendix 6 Survey Data

Survey Data


Looption	Irish Transve	rse Mercator	Elevation	Irish National Grid				
Location	Easting	Northing	Elevation	Easting	Northing			
		Bore	holes					
BH01	716173.833	748313.669	32.86	316248.146	248290.467			
BH02	716186.310	748346.488	31.64	316260.625	248323.293			
BH03	716201.741	748380.797	30.79	316276.059	248357.610			
BH04	716199.256	748431.387	29.65	316273.573	248408.211			
BH05	716170.019	748448.030	29.46	316244.330	248424.857			
BH06	716227.020	748511.910	26.94	316301.342	248488.751			
BH07	716243.645	748621.941	23.57	316317.970	248598.806			
BH08	716256.475	748690.585	20.91	316330.802	248667.465			
BH09	716287.706	748869.142	18.34	316362.038	248846.061			
BH10	716331.869	748840.936	18.54	316406.210	248817.849			
BH11	716392.764	748754.806	17.57	316467.119	248731.701			
BH12	716448.979	748663.363	18.00	316523.347	248640.238			
BH13	716363.054	748603.479	22.06	316437.404	248580.341			
		Tria	l Pits					
TP01	716487.904	748655.913	17.02	316562.281	248632.787			
TP02	716440.612	748689.188	16.51	316514.978	248666.069			
TP03	716438.671	748638.308	19.04	316513.037	248615.178			
TP04	716414.104	748697.864	16.89	316488.464	248674.747			
TP05	716430.514	748728.368	16.27	316504.878	248705.257			
TP06	716399.085	748727.592	17.39	316473.442	248704.481			
TP07	716410.670	748766.653	17.33	316485.029	248743.550			
TP08	716388.911	748784.825	18.00	316463.265	248761.726			
TP09	716373.983	748731.567	17.85	316448.335	248708.457			
TP10	716356.264	748794.276	18.54	316430.611	248771.179			
TP11	716353.395	748825.420	18.39	316427.741	248802.330			
TP12	716300.535	748834.757	18.90	316374.870	248811.668			
TP13	716260.724	748800.659	19.30	316335.051	248777.563			
TP14	716317.031	748767.699	18.75	316391.370	248744.596			
TP15	716255.273	748746.026	19.00	316329.599	248722.918			
TP16	716324.058	748719.507	18.26	316398.399	248696.394			
TP17	716290.650	748715.769	19.49	316364.984	248692.655			
TP18	716342.446	748696.355	18.84	316416.791	248673.237			
TP19	716367.785	748666.198	19.73	316442.136	248643.073			
TP20	716337.273	748662.233	20.42	316411.617	248639.107			
TP21	716377.279	748605.280	21.71	316451.632	248582.142			
TP22	716302.365	748636.517	22.02	316376.702	248613.386			
TP23	716266.448	748652.449	22.11	316340.777	248629.321			
TP24	716231.411	748696.705	21.08	316305.733	248673.586			
TP25	716219.839	748622.510	24.15	316294.159	248599.375			
TP26	716241.971	748643.520	22.73	316316.295	248620.390			
TP27	716269.330	748608.685	23.47	316343.660	248585.547			
TP28	716242.182	748582.076	25.18	316316.507	248558.932			

Survey Data

Location	Irish Transve	erse Mercator	Flouration	Irish National Grid					
Location	Easting	Northing	Elevation	Easting	Northing				
TP29	716305.130	748611.372	23.58	316379.468	248588.235				
TP30	716294.195	748561.395	25.04	316368.531	248538.247				
TP31	P31 716211.618 748584.607		25.91	316285.936	248561.464				
TP32	716233.523 748550.545		26.34	316307.846	248527.395				
TP33	TP33 716269.975 748552.133		25.43	316344.306	248528.983				
TP34	716192.929	748510.478	29.42	316267.244	248487.319				
TP35	716220.972	748495.365	28.88	316295.293	248472.203				
TP35A	716226.269	748493.202	28.90	316300.591	248470.039				
TP36	716167.412	748460.628	29.38	316241.722	248437.458				
TP37	716212.617	748434.663	29.12	316286.937	248411.487				
TP38	716206.729	748385.328	30.43	316281.048	248362.142				
TP39	716179.600	748389.142	30.92	316253.914	248365.956				
TP40	716190.650	748345.002	32.20	316264.966	248321.807				
TP41	716145.700	748341.706	32.17	316220.007	248318.510				
		Soak	aways						
SA01	716156.205	748433.899	31.66	316230.513	248410.723				
SA02	SA02 716232.482 748		26.56	316306.805	248513.041				
SA03	716285.525	748705.152	19.91	316359.858	248682.035				
SA04	SA04 716327.695		18.75	316402.036	248753.218				
SA05	716350.282	748721.286	17.99	316424.629	248698.173				
SA06	716447.087	748682.206	16.12	316521.455	248659.085				
		California Bea	ring Ratio test	s					
CBR01	716135.149	748322.301	33.24	316209.454	248299.101				
CBR05	716176.858	748423.197	29.92	316251.171	248400.019				
CBR06	716173.387	748468.453	29.36	316247.698	248445.284				
CBR07	716195.504	748443.952	29.68	316269.820	248420.778				
CBR08	716228.398	748430.589	28.67	316302.722	248407.413				
CBR09	716246.439	748501.985	26.83	316320.766	248478.824				
CBR10	716191.946	748518.024	29.58	316266.261	248494.866				
CBR13	716208.921	748599.441	25.38	316283.239	248576.301				
CBR15	716257.640	748644.859	22.48	316331.968	248621.729				
CBR17	716329.117	748592.228	24.15	316403.460	248569.087				
CBR18	716335.098	748638.940	21.70	316409.442	248615.809				
CBR23	716244.296	748723.792	20.81	316318.620	248700.679				
CBR24	716258.830	748770.348	19.48	316333.157	248747.245				
CBR25	716290.888	748755.859	19.20	316365.222	248732.753				
CBR26	716308.219	748742.060	18.96	316382.556	248718.951				
CBR30	716436.941	748713.604	15.45	316511.306	248690.490				
CBR32	716376.589	748806.303	18.12	316450.940	248783.209				
CBR35	716304.232	748865.656	18.31	316378.567	248842.574				
CBR36	716278.329	748846.540	18.45	316352.659	248823.454				

UK and Ireland Office Locations

